|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.15.03.0053.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PolyGamma[-2 n, -(p/q)] == (1/(-1 + 2 n)!)
((-(p/q)^(-1 + 2 n)) (EulerGamma + (EulerGamma p)/(2 n q) - Pi I -
Log[p/q] + PolyGamma[2 n] +
Sum[(Binomial[-1 + 2 n, k] (Sum[(p/q)^j Binomial[k, j]
PolyGamma[1 - j + k] (2 Zeta[j - k, 1 - p/q] -
Zeta[j - k, 1 - p/q]), {j, 0, k}] - PolyGamma[1 + k] Zeta[-k] -
Derivative[1][Zeta][-k]))/(-(p/q))^k, {k, 0, -1 + 2 n}]) -
(BernoulliB[2 n] (-Log[2 Pi] + PolyGamma[2 n]))/(q^(2 n) (2 n)) +
(BernoulliB[2 n, (-p + q)/q] (-Log[2 Pi q] + PolyGamma[2 n]))/(2 n) +
((-1)^(1 + n) Pi^(1 - 2 n) Sum[PolyGamma[-1 + 2 n, j/q]
Sin[(2 j Pi (-p + q))/q], {j, 1, -1 + q}])/(2^(2 n) q^(2 n)) +
((-1)^(1 + n) 2^(1 - 2 n) (-1 + 2 n)! Sum[Cos[(2 j Pi (-p + q))/q]
Derivative[1, 0][Zeta][2 n, j/q], {j, 1, -1 + q}])/
(Pi^(2 n) q^(2 n)) + Derivative[1][Zeta][1 - 2 n]/q^(2 n)) /;
Element[n, Integers] && n > 0 && Element[p, Integers] && 0 < p < q &&
Element[q, Integers] && q > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n"]], ",", RowBox[List["-", FractionBox["p", "q"]]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["p", "q"], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]]]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", FractionBox[RowBox[List["EulerGamma", " ", "p"]], RowBox[List["2", " ", "n", " ", "q"]]], "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "-", RowBox[List["Log", "[", FractionBox["p", "q"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["p", "q"]]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["p", "q"], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "j", "+", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "-", "k"]], ",", RowBox[List["1", "-", FractionBox["p", "q"]]]]], "]"]]]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "-", "k"]], ",", RowBox[List["1", "-", FractionBox["p", "q"]]]]], "]"]]]], ")"]]]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List["-", "k"]], "]"]]]], "-", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "k"]], "]"]]]], ")"]]]]]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["q", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]]]], ")"]]]], RowBox[List["2", " ", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["2", " ", "n"]], ",", FractionBox[RowBox[List[RowBox[List["-", "p"]], "+", "q"]], "q"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]", " ", "q"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]]]], ")"]]]], RowBox[List["2", " ", "n"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", "n"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["q", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List[RowBox[List["-", "1"]], "+", "q"]]], RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", FractionBox["j", "q"]]], "]"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["2", " ", "j", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "+", "q"]], ")"]]]], "q"], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", "n"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", SuperscriptBox["q", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List[RowBox[List["-", "1"]], "+", "q"]]], RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["2", " ", "j", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "+", "q"]], ")"]]]], "q"], "]"]], " ", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["2", " ", "n"]], ",", FractionBox["j", "q"]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox["q", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["0", "<", "p", "<", "q"]], "\[And]", RowBox[List["q", "\[Element]", "Integers"]], "\[And]", RowBox[List["q", ">", "1"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> q </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> j </mi> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> q </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> , </mo> <mfrac> <mi> j </mi> <mi> q </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> q </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> q </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mfrac> <mo> ⁢ </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msub> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mfrac> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["j", "-", "k"]], Zeta, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["p", "q"]]], Zeta, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["j", "-", "k"]], Zeta, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["p", "q"]]], Zeta, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List["-", "k"]], Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[List[], Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> p </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mn> 0 </mn> <mo> < </mo> <mi> p </mi> <mo> < </mo> <mi> q </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> > </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> j </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> <pi /> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> <pi /> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> Zeta </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <ci> j </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> q </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <eulergamma /> <ci> p </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <eulergamma /> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> <apply> <in /> <ci> p </ci> <integers /> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> p </ci> <ci> q </ci> </apply> <apply> <in /> <ci> q </ci> <integers /> </apply> <apply> <gt /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n_"]], ",", RowBox[List["-", FractionBox["p_", "q_"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["p", "q"], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]]]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", FractionBox[RowBox[List["EulerGamma", " ", "p"]], RowBox[List["2", " ", "n", " ", "q"]]], "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "-", RowBox[List["Log", "[", FractionBox["p", "q"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["p", "q"]]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["p", "q"], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "j", "+", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "-", "k"]], ",", RowBox[List["1", "-", FractionBox["p", "q"]]]]], "]"]]]], "-", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "-", "k"]], ",", RowBox[List["1", "-", FractionBox["p", "q"]]]]], "]"]]]], ")"]]]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List["-", "k"]], "]"]]]], "-", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "k"]], "]"]]]], ")"]]]]]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["q", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]]]], ")"]]]], RowBox[List["2", " ", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["2", " ", "n"]], ",", FractionBox[RowBox[List[RowBox[List["-", "p"]], "+", "q"]], "q"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]", " ", "q"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]]]], ")"]]]], RowBox[List["2", " ", "n"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", "n"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["q", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List[RowBox[List["-", "1"]], "+", "q"]]], RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", FractionBox["j", "q"]]], "]"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["2", " ", "j", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "+", "q"]], ")"]]]], "q"], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "+", "n"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", SuperscriptBox["q", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List[RowBox[List["-", "1"]], "+", "q"]]], RowBox[List[RowBox[List["Cos", "[", FractionBox[RowBox[List["2", " ", "j", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "+", "q"]], ")"]]]], "q"], "]"]], " ", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["2", " ", "n"]], ",", FractionBox["j", "q"]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox["q", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["0", "<", "p", "<", "q"]], "&&", RowBox[List["q", "\[Element]", "Integers"]], "&&", RowBox[List["q", ">", "1"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|