|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.15.03.0059.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PolyGamma[-2 n, -(1/4)] == (1/(-1 + 2 n)!)
((((-1)^n PolyGamma[2 n - 1, 1/4])/(4 (8 Pi)^(2 n - 1)) -
((2^(2 n - 1) - 1) Derivative[1][Zeta][-2 n + 1])/2^(4 n - 1) +
(((-(4^n - 4^(2 n))) Pi + (2^(2 n + 1) - 2^3) Log[2])/(4^(2 n + 1) n))
BernoulliB[2 n]) - 4^(1 - 2 n) (EulerGamma + EulerGamma/(8 n) - I Pi +
Log[4] + PolyGamma[2 n] + Sum[(-4)^k Binomial[-1 + 2 n, k]
(Sum[(Binomial[k, j] PolyGamma[1 - j + k] Zeta[j - k, 3/4])/4^j,
{j, 0, k}] - PolyGamma[1 + k] Zeta[-k] - Derivative[1][Zeta][-k]),
{k, 0, -1 + 2 n}])) /; Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n"]], ",", RowBox[List["-", FractionBox["1", "4"]]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["2", "n"]], "-", "1"]], ",", FractionBox["1", "4"]]], "]"]]]], RowBox[List["4", SuperscriptBox[RowBox[List["(", RowBox[List["8", "\[Pi]"]], ")"]], RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "-", "1"]], ")"]], RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "n"]], "+", "1"]], "]"]]]], SuperscriptBox["2", RowBox[List[RowBox[List["4", "n"]], "-", "1"]]]], "+", RowBox[List[FractionBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["4", "n"], "-", SuperscriptBox["4", RowBox[List["2", "n"]]]]], ")"]]]], " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "n"]], "+", "1"]]], "-", SuperscriptBox["2", "3"]]], ")"]], RowBox[List["Log", "[", "2", "]"]]]]]], ")"]], RowBox[List[SuperscriptBox["4", RowBox[List[RowBox[List["2", "n"]], "+", "1"]]], "n"]]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]]]]]], ")"]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", RowBox[List["2", "n"]]]]], RowBox[List["(", RowBox[List["EulerGamma", "+", FractionBox["EulerGamma", RowBox[List["8", " ", "n"]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "4"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox["4", RowBox[List["-", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "j", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "-", "k"]], ",", FractionBox["3", "4"]]], "]"]]]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List["-", "k"]], "]"]]]], "-", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "k"]], "]"]]]], ")"]]]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <msup> <mn> 2 </mn> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 4 </mn> <mi> n </mi> </msup> <mo> - </mo> <msup> <mn> 4 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mrow> <mrow> <msup> <mn> 4 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mfrac> <mo> ⁢ </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mo> + </mo> <mfrac> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation> </semantics> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mn> 4 </mn> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[TagBox[RowBox[List["j", "-", "k"]], Zeta, Rule[Editable, True]], ",", TagBox[FractionBox["3", "4"], Zeta, Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List["-", "k"]], Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mi> ζ </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[List[], Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <pi /> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <pi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <eulergamma /> <apply> <times /> <eulergamma /> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> </apply> </apply> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n_"]], ",", RowBox[List["-", FractionBox["1", "4"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]], ",", FractionBox["1", "4"]]], "]"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["8", " ", "\[Pi]"]], ")"]], RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], "-", "1"]], ")"]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n"]], "+", "1"]], "]"]]]], SuperscriptBox["2", RowBox[List[RowBox[List["4", " ", "n"]], "-", "1"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["4", "n"], "-", SuperscriptBox["4", RowBox[List["2", " ", "n"]]]]], ")"]]]], " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], "-", SuperscriptBox["2", "3"]]], ")"]], " ", RowBox[List["Log", "[", "2", "]"]]]]]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]]]], RowBox[List[SuperscriptBox["4", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], " ", "n"]]]]], ")"]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", FractionBox["EulerGamma", RowBox[List["8", " ", "n"]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "4"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox["4", RowBox[List["-", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "j", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "-", "k"]], ",", FractionBox["3", "4"]]], "]"]]]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List["-", "k"]], "]"]]]], "-", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "k"]], "]"]]]], ")"]]]]]]]], ")"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|