Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > PolyGamma[nu,z] > Specific values > Values at fixed points





http://functions.wolfram.com/06.15.03.0060.01









  


  










Input Form





PolyGamma[-2 n, 1/4] == (1/(-1 + 2 n)!) ((-1)^n 2^(1 - 6 n) Pi^(1 - 2 n) PolyGamma[-1 + 2 n, 1/4] - ((-2 + 4^n) Derivative[1][Zeta][1 - 2 n])/16^n + ((4^(-1 - 2 n) ((-4^n + 16^n) Pi + (-4 + 4^n) Log[4]))/n) BernoulliB[2 n] + (1/n) (2^(-1 - 4 n) (-EulerGamma + I Pi - 2 I n Pi + n Log[16 Pi^8] + 8 n (EulerGamma + PolyGamma[2 n]))) - 4^(1 - 2 n) Sum[(-4)^k Binomial[-1 + 2 n, k] (Sum[(Binomial[k, j] PolyGamma[1 - j + k] Zeta[j - k, 3/4])/4^j, {j, 0, k}] - PolyGamma[1 + k] Zeta[-k] - Derivative[1][Zeta][-k]), {k, 0, -1 + 2 n}] - 4^(1 - 2 n) Sum[((-1)^j Binomial[-1 + 2 n, j])/ (-1 - j + 2 n), {j, 0, -2 + 2 n}] - 4^(1 - 2 n) Sum[(-1)^j Binomial[-1 + 2 n, j] Sum[(Binomial[-1 - j + 2 n, k] k! PolyLog[1 + k, I])/(-((Pi I)/2))^k, {k, 0, -1 - j + 2 n}], {j, 0, -2 + 2 n}] - (2 I Pi)^(1 - 2 n) Sum[((I Pi)/2)^j Binomial[-1 + 2 n, j] (-1 - j + 2 n)! Zeta[-j + 2 n], {j, 0, -2 + 2 n}]) /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n"]], ",", FractionBox["1", "4"]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["6", " ", "n"]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", FractionBox["1", "4"]]], "]"]]]], "-", RowBox[List[SuperscriptBox["16", RowBox[List["-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["4", "n"]]], ")"]], RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["4", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["4", "n"]]], "+", SuperscriptBox["16", "n"]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", SuperscriptBox["4", "n"]]], ")"]], " ", RowBox[List["Log", "[", "4", "]"]]]]]], ")"]]]], "n"], RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]]]], "+", RowBox[List[FractionBox["1", "n"], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["4", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "EulerGamma"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]"]], "+", RowBox[List["n", " ", RowBox[List["Log", "[", RowBox[List["16", " ", SuperscriptBox["\[Pi]", "8"]]], "]"]]]], "+", RowBox[List["8", " ", "n", " ", RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]]]], ")"]]]]]], ")"]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "4"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox["4", RowBox[List["-", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "j", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "-", "k"]], ",", FractionBox["3", "4"]]], "]"]]]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List["-", "k"]], "]"]]]], "-", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "k"]], "]"]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "n"]]]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "j"]], "]"]]]], RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]]]]]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", "\[ImaginaryI]"]], "]"]]]]]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]"]], ")"]], RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "2"], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "j"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["-", "j"]], "+", RowBox[List["2", " ", "n"]]]], "]"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]], &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]], &quot;-&quot;, &quot;j&quot;]], Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mn> 4 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mn> 4 </mn> <mi> n </mi> </msup> </mrow> <mo> + </mo> <msup> <mn> 16 </mn> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> + </mo> <msup> <mn> 4 </mn> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> n </mi> </mfrac> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 8 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> n </mi> </mfrac> <mo> - </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]], &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]], &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot;n&quot;]], &quot;-&quot;, &quot;j&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> &#8520; </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]], &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mn> 4 </mn> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;j&quot;, &quot;-&quot;, &quot;k&quot;]], Zeta, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;3&quot;, &quot;4&quot;], Zeta, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;k&quot;]], Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#950; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 16 </mn> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> + </mo> <msup> <mn> 4 </mn> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> &#950; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[List[], Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 16 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -4 </cn> <apply> <power /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> </apply> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <eulergamma /> </apply> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> n </ci> <pi /> </apply> </apply> <apply> <times /> <ci> n </ci> <apply> <ln /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <pi /> <cn type='integer'> 8 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> n </ci> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <eulergamma /> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> j </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <imaginaryi /> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -4 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 16 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> -2 </cn> <apply> <power /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> </apply> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n_"]], ",", FractionBox["1", "4"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["6", " ", "n"]]]]], " ", SuperscriptBox["\[Pi]", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", FractionBox["1", "4"]]], "]"]]]], "-", RowBox[List[SuperscriptBox["16", RowBox[List["-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["4", "n"]]], ")"]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["4", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["4", "n"]]], "+", SuperscriptBox["16", "n"]]], ")"]], " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", SuperscriptBox["4", "n"]]], ")"]], " ", RowBox[List["Log", "[", "4", "]"]]]]]], ")"]]]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]]]], "n"], "+", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["4", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "EulerGamma"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]"]], "+", RowBox[List["n", " ", RowBox[List["Log", "[", RowBox[List["16", " ", SuperscriptBox["\[Pi]", "8"]]], "]"]]]], "+", RowBox[List["8", " ", "n", " ", RowBox[List["(", RowBox[List["EulerGamma", "+", RowBox[List["PolyGamma", "[", RowBox[List["2", " ", "n"]], "]"]]]], ")"]]]]]], ")"]]]], "n"], "-", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "4"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox["4", RowBox[List["-", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "j", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["j", "-", "k"]], ",", FractionBox["3", "4"]]], "]"]]]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k"]], "]"]], " ", RowBox[List["Zeta", "[", RowBox[List["-", "k"]], "]"]]]], "-", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "k"]], "]"]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "n"]]]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "j"]], "]"]]]], RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]]]]]], "-", RowBox[List[SuperscriptBox["4", RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "j"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", "\[ImaginaryI]"]], "]"]]]]]]]]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]"]], ")"]], RowBox[List["1", "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["2", " ", "n"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "2"], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ",", "j"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["-", "j"]], "+", RowBox[List["2", " ", "n"]]]], "]"]]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02