Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > PolyGamma[nu,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > General case





http://functions.wolfram.com/06.15.06.0006.01









  


  










Input Form





PolyGamma[\[Nu], z] == (-FDPowerConstant[z, -1, \[Nu]]) z^(-1 - \[Nu]) - EulerGamma/(z^\[Nu] Gamma[1 - \[Nu]]) + Sum[((-1)^j (j + 1)! Zeta[j + 2] z^(j - \[Nu] + 1))/Gamma[j - \[Nu] + 2], {j, 0, Infinity}] /; Re[\[Nu]] > 0 && Re[z] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "1"]], ",", "\[Nu]"]], "]"]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]], "-", FractionBox[RowBox[List["EulerGamma", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], "!"]], " ", RowBox[List["Zeta", "[", RowBox[List["j", "+", "2"]], "]"]], SuperscriptBox["z", RowBox[List["j", "-", "\[Nu]", "+", "1"]]]]], RowBox[List["Gamma", "[", RowBox[List["j", "-", "\[Nu]", "+", "2"]], "]"]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "\[Nu]", "]"]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mtext> </mtext> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;2&quot;]], Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> j </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyGamma </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> exp </ci> </apply> <ci> &#957; </ci> </apply> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <eulergamma /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <real /> <ci> &#957; </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "1"]], ",", "\[Nu]"]], "]"]]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]]]], "-", FractionBox[RowBox[List["EulerGamma", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], "!"]], " ", RowBox[List["Zeta", "[", RowBox[List["j", "+", "2"]], "]"]], " ", SuperscriptBox["z", RowBox[List["j", "-", "\[Nu]", "+", "1"]]]]], RowBox[List["Gamma", "[", RowBox[List["j", "-", "\[Nu]", "+", "2"]], "]"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "\[Nu]", "]"]], ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29