| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/06.15.06.0033.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    PolyGamma[-n, z] == (-1)^n PolyGamma[-n, -z] + 
   Sum[Sum[((-(z + p)^k - (-1)^(n + k) (z + p - 1)^k)/k!) 
       Sum[((-1)^j/j!) PolyGamma[j + k - n, 1], {j, 0, n - k - 2}], 
      {k, 0, n - 2}] + ((z + p)^(-1 + n)/(n - 1)!) 
      (-EulerGamma + Log[-p - z] - PolyGamma[n]) + 
     ((z + p - 1)^(-1 + n)/(n - 1)!) (EulerGamma - 
       2 I Pi Floor[1/2 - Arg[-1 + p - m]/(2 Pi) - (1/(2 Pi)) 
           Arg[1 + (z + m)/(-1 + p - m)]] - Log[-1 + p - m] - 
       Log[1 + (z + m)/(-1 + p - m)] + PolyGamma[n]), {p, 1, m - 1}] + 
   Sum[((-(z + m)^k - (-1)^(n + k) (z + m - 1)^k)/k!) 
     Sum[((-1)^j/j!) PolyGamma[j + k - n, 1], {j, 0, n - k - 2}], 
    {k, 0, n - 2}] - (1/(n - 1)!) 
    (Sum[(-2 Pi I)^(1 + k - n) (z + m)^k Binomial[n - 1, k] (n - 1 - k)! 
       PolyLog[n - k, 1], {k, 0, n - 2}] + 
     Sum[(-1)^(n - k) Binomial[n - 1, k] Sum[(2 Pi I)^(-n + 1 + k + j) 
         (z + m)^(k + j) Binomial[n - 1 - k, j] (n - 1 - k - j)! 
         PolyLog[n - k - j, E^(-2 I Pi z)], {j, 0, n - 1 - k}], 
      {k, 0, -1 + n}]) + ((z + m - 1)^(-1 + n)/(n - 1)!) 
    (EulerGamma - I Pi - 2 I Pi Floor[-(Arg[1 - z - m]/(2 Pi))] - 
     Log[1 - z - m] + PolyGamma[n]) + ((z + m)^(-1 + n)/(n (-1 + n)!)) 
    ((-I) (z + m) Pi + I n Pi + 2 I n Pi Floor[3/4 - Arg[-z - m]/(2 Pi)] + 
     2 I n Pi Floor[-(Arg[z + m]/(2 Pi))] + n Log[-2 I Pi]) /; 
 (z -> -m) && Element[m, Integers] && m > 0 && 
  ((Element[n, Integers] && n > 1) || 
   (n == 1 && Inequality[-Pi, Less, Arg[z + m], LessEqual, Pi/2])) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], RowBox[List["m", "-", "1"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "p"]], ")"]], "k"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "p", "-", "1"]], ")"]], "k"]]]]], RowBox[List["k", "!"]]], "  ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "k", "-", "2"]]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List["j", "!"]]], "  ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["j", "+", "k", "-", "n"]], ",", "1"]], "]"]]]]]]]]]], "+", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "EulerGamma"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "p"]], "-", "z"]], "]"]], "-", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "p", "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "-", RowBox[List[FractionBox["1", RowBox[List["2", " ", "\[Pi]"]]], RowBox[List["Arg", "[", RowBox[List["1", "+", FractionBox[RowBox[List["z", "+", "m"]], RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", "m"]]]]], "]"]]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", "m"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[RowBox[List["z", "+", "m"]], RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", "m"]]]]], "]"]], "+", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], "k"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m", "-", "1"]], ")"]], "k"]]]]], RowBox[List["k", "!"]]], "  ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "k", "-", "2"]]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List["j", "!"]]], "  ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["j", "+", "k", "-", "n"]], ",", "1"]], "]"]]]]]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "\[Pi]", " ", "\[ImaginaryI]"]], ")"]], RowBox[List["1", "+", "k", "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], "k"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "-", "k"]], ")"]], "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", "1"]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1", "-", "k"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]"]], ")"]], RowBox[List[RowBox[List["-", "n"]], "+", "1", "+", "k", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], RowBox[List["k", "+", "j"]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1", "-", "k"]], ",", "j"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "-", "k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["n", "-", "k", "-", "j"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "]"]]]]]]]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m", "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "-", "z", "-", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z", "-", "m"]], "]"]], "+", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " "]], RowBox[List["n", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["\[ImaginaryI]", " ", "n", " ", "\[Pi]"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["3", "4"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "-", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "+", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", RowBox[List["n", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]"]], "]"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", "m"]]]], ")"]], "\[And]", RowBox[List["Element", "[", RowBox[List["m", ",", "Integers"]], "]"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "1"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["n", "\[Equal]", "1"]], "\[And]", RowBox[List[RowBox[List["-", "\[Pi]"]], "<", RowBox[List["Arg", "[", RowBox[List["z", "+", "m"]], "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]]]], ")"]]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mrow>  <mi> n </mi>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> n </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> n </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> n </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> n </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mi> n </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> p </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mi> n </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mi> n </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> p </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </msup>  <mo> ( </mo>  <mn> 1 </mn>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> j </mi>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  </mrow>  </msup>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  </msup>  <mo> ( </mo>  <mn> 1 </mn>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> j </mi>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> Li </mi>  <annotation-xml encoding='MathML-Content'>  <ci> PolyLog </ci>  </annotation-xml>  </semantics>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msub>  <mo> ( </mo>  <mn> 1 </mn>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mi> k </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["-", "k"]], "+", "n", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <semantics>  <mi> Li </mi>  <annotation-xml encoding='MathML-Content'>  <ci> PolyLog </ci>  </annotation-xml>  </semantics>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  </mrow>  </msub>  <mo> ( </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℤ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> n </mi>  <mo> > </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ∨ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo>  </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> π </mi>  </mrow>  <mo> < </mo>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ≤ </mo>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> PolyGamma </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> n </ci>  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <pi />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> n </ci>  <pi />  <apply>  <floor />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> n </ci>  <pi />  <apply>  <floor />  <apply>  <plus />  <cn type='rational'> 3 <sep /> 4 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> n </ci>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <pi />  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> n </ci>  <pi />  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <eulergamma />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <pi />  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <pi />  <apply>  <floor />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> PolyGamma </ci>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> p </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <ci> n </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <eulergamma />  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <pi />  <apply>  <floor />  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <arg />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ln />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> PolyGamma </ci>  <ci> n </ci>  </apply>  <eulergamma />  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -2 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> p </ci>  <ci> z </ci>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> n </ci>  <cn type='integer'> -2 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> j </ci>  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -2 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <ci> n </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> n </ci>  <cn type='integer'> -2 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> j </ci>  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -2 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -2 </cn>  <pi />  <imaginaryi />  </apply>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  <ci> k </ci>  </apply>  <apply>  <ci> Binomial </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> k </ci>  </apply>  <apply>  <factorial />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> PolyLog </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> k </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  <imaginaryi />  </apply>  <apply>  <plus />  <ci> j </ci>  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <ci> j </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  <ci> j </ci>  </apply>  <apply>  <factorial />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> PolyLog </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <pi />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <ci> Rule </ci>  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  <apply>  <in />  <ci> m </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <or />  <apply>  <and />  <apply>  <in />  <ci> n </ci>  <integers />  </apply>  <apply>  <gt />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Inequality </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <pi />  </apply>  <lt />  <apply>  <arg />  <apply>  <plus />  <ci> m </ci>  <ci> z </ci>  </apply>  </apply>  <leq />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], RowBox[List["m", "-", "1"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "p"]], ")"]], "k"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "p", "-", "1"]], ")"]], "k"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "k", "-", "2"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["j", "+", "k", "-", "n"]], ",", "1"]], "]"]]]], RowBox[List["j", "!"]]]]]]], RowBox[List["k", "!"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "EulerGamma"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "p"]], "-", "z"]], "]"]], "-", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "p", "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "+", FractionBox[RowBox[List["z", "+", "m"]], RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", "m"]]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", "m"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[RowBox[List["z", "+", "m"]], RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", "m"]]]]], "]"]], "+", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]], ")"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], "k"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m", "-", "1"]], ")"]], "k"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "k", "-", "2"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["j", "+", "k", "-", "n"]], ",", "1"]], "]"]]]], RowBox[List["j", "!"]]]]]]], RowBox[List["k", "!"]]]]], "-", FractionBox[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], " ", "\[Pi]", " ", "\[ImaginaryI]"]], ")"]], RowBox[List["1", "+", "k", "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "-", "k"]], ")"]], "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["n", "-", "k"]], ",", "1"]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1", "-", "k"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]], ")"]], RowBox[List[RowBox[List["-", "n"]], "+", "1", "+", "k", "+", "j"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], RowBox[List["k", "+", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1", "-", "k"]], ",", "j"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "-", "k", "-", "j"]], ")"]], "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["n", "-", "k", "-", "j"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", "z"]]]]], "]"]]]]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m", "-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["1", "-", "z", "-", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z", "-", "m"]], "]"]], "+", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["z", "+", "m"]], ")"]], " ", "\[Pi]"]], "+", RowBox[List["\[ImaginaryI]", " ", "n", " ", "\[Pi]"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["3", "4"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List["-", "z"]], "-", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "n", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "+", "m"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", RowBox[List["n", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]"]], "]"]]]]]], ")"]]]], RowBox[List["n", " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "!"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List["-", "m"]]]], ")"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["n", "\[Equal]", "1"]], "&&", RowBox[List[RowBox[List["-", "\[Pi]"]], "<", RowBox[List["Arg", "[", RowBox[List["z", "+", "m"]], "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]]]], ")"]]]], ")"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  |