Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > PolyGamma[nu,z] > Series representations > Generalized power series > Expansions of psi(nu)(-m+Epsilon) at Epsilon==0 > For the function itself > Special cases





http://functions.wolfram.com/06.15.06.0034.01









  


  










Input Form





PolyGamma[n, -m + \[Epsilon]] \[Proportional] ((-1)^(n - 1) n!)/\[Epsilon]^(n + 1) + Gamma[1 + n] HarmonicNumber[m, 1 + n] + PolyGamma[n, 1] + (Gamma[2 + n] HarmonicNumber[m, 2 + n] + PolyGamma[1 + n, 1]) \[Epsilon] + (1/2) (Gamma[3 + n] HarmonicNumber[m, 3 + n] + PolyGamma[2 + n, 1]) \[Epsilon]^2 + \[Ellipsis] /; (\[Epsilon] -> 0) && Element[m, Integers] && m >= 0 && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["n", ",", RowBox[List[RowBox[List["-", "m"]], "+", "\[Epsilon]"]]]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List["n", "!"]]]], SuperscriptBox["\[Epsilon]", RowBox[List["n", "+", "1"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["HarmonicNumber", "[", RowBox[List["m", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["n", ",", "1"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["2", "+", "n"]], "]"]], " ", RowBox[List["HarmonicNumber", "[", RowBox[List["m", ",", RowBox[List["2", "+", "n"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", "1"]], "]"]]]], ")"]], "\[Epsilon]"]], " ", "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", "+", "n"]], "]"]], " ", RowBox[List["HarmonicNumber", "[", RowBox[List["m", ",", RowBox[List["3", "+", "n"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", "+", "n"]], ",", "1"]], "]"]]]], ")"]], SuperscriptBox["\[Epsilon]", "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["\[Epsilon]", "\[Rule]", "0"]], ")"]], "\[And]", RowBox[List["Element", "[", RowBox[List["m", ",", "Integers"]], "]"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> &#1013; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <msup> <mi> &#1013; </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mrow> <mi> &#915; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> m </mi> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> m </mi> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#1013; </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> m </mi> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#1013; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#1013; </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> PolyGamma </ci> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <ci> &#1013; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <ci> &#1013; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> &#915; </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> HarmonicNumber </ci> <ci> m </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> HarmonicNumber </ci> <ci> m </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> &#1013; </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> HarmonicNumber </ci> <ci> m </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> &#1013; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> &#1013; </ci> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List["n_", ",", RowBox[List[RowBox[List["-", "m_"]], "+", "\[Epsilon]_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List["n", "!"]]]], SuperscriptBox["\[Epsilon]", RowBox[List["n", "+", "1"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["HarmonicNumber", "[", RowBox[List["m", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["n", ",", "1"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["2", "+", "n"]], "]"]], " ", RowBox[List["HarmonicNumber", "[", RowBox[List["m", ",", RowBox[List["2", "+", "n"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", "1"]], "]"]]]], ")"]], " ", "\[Epsilon]"]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", "+", "n"]], "]"]], " ", RowBox[List["HarmonicNumber", "[", RowBox[List["m", ",", RowBox[List["3", "+", "n"]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", "+", "n"]], ",", "1"]], "]"]]]], ")"]], " ", SuperscriptBox["\[Epsilon]", "2"]]], "+", "\[Ellipsis]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["\[Epsilon]", "\[Rule]", "0"]], ")"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02