|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.15.06.0042.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PolyGamma[n, z] \[Proportional] D[(z - 1/2) Log[z] - z + Log[2 Pi]/2,
{z, n + 1}] - (-1)^n Sum[((2 k + n - 1)!/((2 k)! z^(2 k + n)))
BernoulliB[2 k], {k, 1, Infinity}] - Floor[Abs[Arg[z]]/Pi]
((-I) Pi)^(n + 1) 2^n (I Cot[Pi z] - 1)
Sum[((-1)^k k! StirlingS2[n, k] (I Cot[Pi z] + 1)^k)/2^k, {k, 0, n}] /;
Element[n, Integers] && n >= -1 && !(Element[z, Integers] && z < 0) &&
(Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["D", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "-", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "-", "z", "+", FractionBox[RowBox[List[" ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "2"]]], ",", RowBox[List["{", RowBox[List["z", ",", RowBox[List["n", "+", "1"]]]], "}"]]]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "n", "-", "1"]], ")"]], "!"]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "k"]], ")"]], "!"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", "k"]], "+", "n"]]]]]], RowBox[List["BernoulliB", "[", RowBox[List["2", "k"]], "]"]]]]]]]], "-", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "z", "]"]], "]"]], "\[Pi]"], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]"]], ")"]], RowBox[List["n", "+", "1"]]], " ", SuperscriptBox["2", "n"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "z"]], "]"]]]], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["k", "!"]], " ", RowBox[List["StirlingS2", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "z"]], "]"]]]], "+", "1"]], ")"]], "k"]]], SuperscriptBox["2", "k"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", RowBox[List["-", "1"]]]], "\[And]", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["z", "\[Element]", "Integers"]], "&&", RowBox[List["z", "<", "0"]]]], ")"]]]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msub> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mi> π </mi> </mfrac> <mo> ⌋ </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msubsup> <semantics> <mi> 𝒮 </mi> <annotation encoding='Mathematica'> TagBox["\[ScriptCapitalS]", StirlingS2] </annotation> </semantics> <mi> n </mi> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <msup> <mn> 2 </mn> <mi> k </mi> </msup> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ≥ </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mo> ¬ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> z </mi> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> PolyGamma </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </degree> </bvar> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <floor /> <apply> <times /> <apply> <abs /> <apply> <arg /> <ci> z </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <pi /> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> StirlingS2 </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cot /> <apply> <times /> <pi /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <geq /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <not /> <apply> <and /> <apply> <in /> <ci> z </ci> <integers /> </apply> <apply> <lt /> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", RowBox[List["n", "+", "1"]]]], "}"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "-", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "-", "z", "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "n", "-", "1"]], ")"]], "!"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "+", "n"]]]]]]]]]], "-", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["Abs", "[", RowBox[List["Arg", "[", "z", "]"]], "]"]], "\[Pi]"], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "\[Pi]"]], ")"]], RowBox[List["n", "+", "1"]]], " ", SuperscriptBox["2", "n"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "z"]], "]"]]]], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["k", "!"]], " ", RowBox[List["StirlingS2", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "z"]], "]"]]]], "+", "1"]], ")"]], "k"]]], SuperscriptBox["2", "k"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", RowBox[List["-", "1"]]]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["z", "\[Element]", "Integers"]], "&&", RowBox[List["z", "<", "0"]]]], ")"]]]], "&&", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|