|  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/06.15.07.0009.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | PolyGamma[\[Nu], z] == (z^(-1 - \[Nu])/Gamma[-\[Nu]]) 
    (-Log[z] + EulerGamma + Derivative[1][Gamma][-\[Nu]]/Gamma[-\[Nu]]) - 
   EulerGamma/(z^\[Nu] Gamma[1 - \[Nu]]) - (z^(-1 - \[Nu])/(2 Pi I)) 
    Integrate[((z^s Gamma[s] Zeta[s])/Gamma[s - \[Nu]]) (Pi/Sin[Pi s]), 
     {s, \[Gamma] - I Infinity, \[Gamma] + I Infinity}] /; 1 < \[Gamma] < 2 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List["-", " ", RowBox[List["Log", "[", "z", "]"]]]], "+", "EulerGamma", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", "1", "]"]], "[", "Gamma", "]"]], "[", RowBox[List["-", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]]], ")"]]]], "-", FractionBox[RowBox[List["EulerGamma", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]], "-", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]"]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "s"], RowBox[List["Gamma", "[", "s", "]"]], RowBox[List["Zeta", "[", "s", "]"]]]], RowBox[List["Gamma", "[", RowBox[List["s", "-", "\[Nu]"]], "]"]]], FractionBox["\[Pi]", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "s"]], "]"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]]]]]], "/;", RowBox[List["1", "<", "\[Gamma]", "<", "2"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mrow>  <mo> ( </mo>  <mi> ν </mi>  <mo> ) </mo>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <msup>  <mi> Γ </mi>  <mo> ′ </mo>  </msup>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> + </mo>  <semantics>  <mi> ℽ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[List[], EulerGamma]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mtext>   </mtext>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mo> ∫ </mo>  <mrow>  <mi> γ </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> ∞ </mi>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> ∞ </mi>  </mrow>  <mo> + </mo>  <mi> γ </mi>  </mrow>  </msubsup>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mi> s </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> s </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> s </mi>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox["s", Zeta, Rule[Editable, True]], ")"]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> s </mi>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> s </mi>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mn> 1 </mn>  <mo> < </mo>  <mi> γ </mi>  <mo> < </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> PolyGamma </ci>  <ci> ν </ci>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <eulergamma />  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ln />  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <ci> D </ci>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <eulergamma />  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  <imaginaryi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <int />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <apply>  <plus />  <ci> γ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <infinity />  </apply>  </apply>  </apply>  </lowlimit>  <uplimit>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <infinity />  </apply>  <ci> γ </ci>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> s </ci>  </apply>  <apply>  <ci> Gamma </ci>  <ci> s </ci>  </apply>  <apply>  <ci> Zeta </ci>  <ci> s </ci>  </apply>  <pi />  <apply>  <power />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> s </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <pi />  <ci> s </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <lt />  <cn type='integer'> 1 </cn>  <ci> γ </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", "z", "]"]]]], "+", "EulerGamma", "+", FractionBox[RowBox[List[SuperscriptBox["Gamma", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], "-", FractionBox[RowBox[List["EulerGamma", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]], "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", "s"], " ", RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Zeta", "[", "s", "]"]]]], ")"]], " ", "\[Pi]"]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["s", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "s"]], "]"]]]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]], RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]]]], "/;", RowBox[List["1", "<", "\[Gamma]", "<", "2"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  |