Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > PolyGamma[nu,z] > Transformations > Transformations and argument simplifications > Argument involving basic arithmetic operations





http://functions.wolfram.com/06.15.16.0023.01









  


  










Input Form





PolyGamma[-n, z] == (-1)^n PolyGamma[-n, -z] + Sum[(2 UnitStep[Re[z]] - 1) Sum[(1/k!) ((-1)^((n + k) UnitStep[Re[z]]) (z - (2 UnitStep[Re[z]] - 1) p)^k + (-1)^((n + k) UnitStep[-Re[z]]) (z - (2 UnitStep[Re[z]] - 1) p + 2 UnitStep[Re[z]] - 1)^k) Sum[((-1)^j/j!) PolyGamma[j + k - n, 1], {j, 0, n - k - 2}], {k, 0, n - 2}] + (1/(n - 1)!) ((z - (2 UnitStep[Re[z]] - 1) p)^(-1 + n) (-EulerGamma + Log[-p + (2 UnitStep[Re[z]] - 1) z] - PolyGamma[n]) + (z - (2 UnitStep[Re[z]] - 1) p + (2 UnitStep[Re[z]] - 1))^(-1 + n) (EulerGamma - Log[-1 + p - (2 UnitStep[Re[z]] - 1) z] + PolyGamma[n])), {p, 1, Floor[Abs[Re[z]]]}] + ((z - (2 UnitStep[Re[z]] - 1) Floor[Abs[Re[z]]])^(-1 + n)/(n - 1)!) (EulerGamma + (I Pi ((2 UnitStep[Re[z]] - 1) z - Floor[Abs[Re[z]]]))/n + 2 I Pi Floor[3/4 - Arg[(2 UnitStep[Re[z]] - 1) z - Floor[Abs[Re[z]]]]/ (2 Pi)] + PolyGamma[n] + Log[-2 Pi I] - Log[Floor[Abs[Re[z]]] - (2 UnitStep[Re[z]] - 1) z] - Sum[(Binomial[-1 + n, k] k! PolyLog[1 + k, 1])/ (2 Pi I ((2 UnitStep[Re[z]] - 1) z - Floor[Abs[Re[z]]]))^k, {k, 1, -1 + n}] + Sum[(-1)^k Binomial[-1 + n, k] Sum[(Binomial[k, j] j! PolyLog[1 + j, E^(2 I Pi (2 UnitStep[Re[z]] - 1) z)])/(2 Pi I (Floor[Abs[Re[z]]] - (2 UnitStep[Re[z]] - 1) z))^j, {j, 0, k}], {k, 0, -1 + n}]) /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[FractionBox["1", RowBox[List["k", "!"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "k"]], ")"]], RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "p"]]]], ")"]], "k"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "k"]], ")"]], RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Re", "[", "z", "]"]]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "p"]], "+", RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "k"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "k", "-", "2"]]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List["j", "!"]]], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["j", "+", "k", "-", "n"]], ",", "1"]], "]"]]]]]]]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "p"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "EulerGamma"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "p"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "z"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "p"]], "+", RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "z"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], RowBox[List["(", RowBox[List["EulerGamma", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "z"]], "-", RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]]], ")"]]]], "n"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["3", "4"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "z"]], "-", RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", "n", "]"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "2"]], "\[Pi]", " ", "\[ImaginaryI]"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "z"]]]], "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "z"]], "-", RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]]], ")"]]]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", "1"]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "z"]]]], ")"]]]], ")"]], RowBox[List["-", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["j", "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["1", "+", "j"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "z"]]]]], "]"]]]]]]]]]]]], ")"]]]]]]]], "/;", " ", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> - </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> + </mo> <mi> z </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> p </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mo> &#8970; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mo> &#8970; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> n </mi> </mfrac> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8971; </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mo> &#8970; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8971; </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <abs /> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </uplimit> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> n </ci> </apply> <eulergamma /> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> p </ci> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <eulergamma /> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> <apply> <ci> UnitStep </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> p </ci> </apply> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> p </ci> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> j </ci> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <floor /> <apply> <abs /> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <floor /> <apply> <plus /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <abs /> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <abs /> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> -2 </cn> <pi /> <imaginaryi /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <floor /> <apply> <abs /> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <abs /> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <apply> <plus /> <apply> <floor /> <apply> <abs /> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <real /> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <eulergamma /> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["-", "z"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "2"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "k"]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "p"]]]], ")"]], "k"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "k"]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Re", "[", "z", "]"]]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "p"]], "+", RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], "k"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "k", "-", "2"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["j", "+", "k", "-", "n"]], ",", "1"]], "]"]]]], RowBox[List["j", "!"]]]]]]], RowBox[List["k", "!"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "p"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "EulerGamma"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "p"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "z"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "p"]], "+", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "1"]], "+", "p", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]], ")"]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List["EulerGamma", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "z"]], "-", RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]]], ")"]]]], "n"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["3", "4"], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "z"]], "-", RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", RowBox[List["PolyGamma", "[", "n", "]"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "2"]], " ", "\[Pi]", " ", "\[ImaginaryI]"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "z"]]]], "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "z"]], "-", RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]]]], ")"]]]], ")"]], RowBox[List["-", "k"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", "k"]], "]"]], " ", RowBox[List["k", "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", "1"]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", RowBox[List["Abs", "[", RowBox[List["Re", "[", "z", "]"]], "]"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "z"]]]], ")"]]]], ")"]], RowBox[List["-", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", RowBox[List["j", "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["1", "+", "j"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Re", "[", "z", "]"]], "]"]]]], "-", "1"]], ")"]], " ", "z"]]]]], "]"]]]]]]]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02