|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.37.09.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SinIntegral[x] == Pi/2 - Limit[Sum[(1/k) Sin[(k x)/n], {k, n + 1, Infinity}],
n -> Infinity] /; Element[x, Reals] && x > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["SinIntegral", "[", "x", "]"]], "\[Equal]", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["Limit", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["n", "+", "1"]]]], "\[Infinity]"], RowBox[List[FractionBox["1", "k"], RowBox[List["Sin", "[", FractionBox[RowBox[List["k", " ", "x"]], "n"], "]"]]]]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["x", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Si </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <munder> <mi> lim </mi> <mrow> <mi> n </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mi> k </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mi> n </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> x </mi> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> SinIntegral </ci> <ci> x </ci> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <limit /> <bvar> <ci> n </ci> </bvar> <condition> <apply> <tendsto /> <ci> n </ci> <infinity /> </apply> </condition> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> k </ci> <ci> x </ci> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <gt /> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["SinIntegral", "[", "x_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["Limit", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["n", "+", "1"]]]], "\[Infinity]"], FractionBox[RowBox[List["Sin", "[", FractionBox[RowBox[List["k", " ", "x"]], "n"], "]"]], "k"]]], ",", RowBox[List["n", "\[Rule]", "\[Infinity]"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["x", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|