Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SinhIntegral






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > SinhIntegral[z] > Complex characteristics > Argument





http://functions.wolfram.com/06.39.19.0008.01









  


  










Input Form





Arg[SinhIntegral[x + I y]] == ArcTan[(1/2) (SinhIntegral[x - x Sqrt[-(y^2/x^2)]] + SinhIntegral[x + x Sqrt[-(y^2/x^2)]]), (x/(2 y)) Sqrt[-(y^2/x^2)] (SinhIntegral[x - x Sqrt[-(y^2/x^2)]] - SinhIntegral[x + x Sqrt[-(y^2/x^2)]])]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Arg", "[", RowBox[List["SinhIntegral", "[", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]], "\[Equal]", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["SinhIntegral", "[", RowBox[List["x", "-", RowBox[List["x", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]], "]"]], "+", RowBox[List["SinhIntegral", "[", RowBox[List["x", "+", RowBox[List["x", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]], "]"]]]], ")"]]]], ",", RowBox[List[FractionBox["x", RowBox[List["2", "y"]]], SqrtBox[RowBox[List["-", FractionBox[RowBox[List[" ", SuperscriptBox["y", "2"]]], SuperscriptBox["x", "2"]]]]], RowBox[List["(", RowBox[List[RowBox[List["SinhIntegral", "[", RowBox[List["x", "-", RowBox[List["x", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]], "]"]], "-", RowBox[List["SinhIntegral", "[", RowBox[List["x", "+", RowBox[List["x", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]], "]"]]]], ")"]]]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> x </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> - </mo> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arg /> <apply> <ci> SinhIntegral </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <arctan /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> SinhIntegral </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> SinhIntegral </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> SinhIntegral </ci> <apply> <plus /> <ci> x </ci> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Arg", "[", RowBox[List["SinhIntegral", "[", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["SinhIntegral", "[", RowBox[List["x", "-", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]], "]"]], "+", RowBox[List["SinhIntegral", "[", RowBox[List["x", "+", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]], "]"]]]], ")"]]]], ",", FractionBox[RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["SinhIntegral", "[", RowBox[List["x", "-", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]], "]"]], "-", RowBox[List["SinhIntegral", "[", RowBox[List["x", "+", RowBox[List["x", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["y", "2"], SuperscriptBox["x", "2"]]]]]]]]], "]"]]]], ")"]]]], RowBox[List["2", " ", "y"]]]]], "]"]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29