| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/06.39.21.0022.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[z^n Sin[b z] SinhIntegral[a z], z] == 
  (-(I/4)) (I b)^(-1 - n) n! (-ExpIntegralEi[(a - I b) z] + 
    ExpIntegralEi[(-(a + I b)) z] - ExpIntegralEi[(a + I b) z]/(-1)^n + 
    (-1)^n ExpIntegralEi[(-a) z + I b z] + (1/Gamma[2 + n]) 
     (2 (1 + n) ((-1)^n Gamma[1 + n, (-I) b z] + Gamma[1 + n, I b z]) 
      SinhIntegral[a z]) + (-1)^n E^((a + I b) z) 
     Sum[(((I b)/(a + I b))^m Sum[((-a - I b)^k z^k)/k!, {k, 0, -1 + m}])/m, 
      {m, 1, n}] - (-1)^n E^((-a) z + I b z) 
     Sum[(((I b)/(I b - a))^m Sum[((a - I b)^k z^k)/k!, {k, 0, -1 + m}])/m, 
      {m, 1, n}] + E^((a - I b) z) 
     Sum[(((I b)/(I b - a))^m Sum[((-a + I b)^k z^k)/k!, {k, 0, -1 + m}])/m, 
      {m, 1, n}] - Sum[(((I b)/(I b + a))^m Sum[((a + I b)^k z^k)/k!, 
         {k, 0, -1 + m}])/m, {m, 1, n}]/E^((a + I b) z)) /; 
 Element[n, Integers] && n >= 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]]]], " ", "z"]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["-", "n"]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["2", "+", "n"]], "]"]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]]], "]"]]]], "+", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], "k"], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]]]], "m"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "a"]]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], "k"], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]]]], "m"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "a"]]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], "k"], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]]]], "m"]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]]]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "a"]]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], "k"], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]]]], "m"]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Shi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ⅈ </mi>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> Ei </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Ei </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> Ei </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Ei </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Shi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> m </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> m </mi>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> k </mi>  </msup>  </mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> m </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> m </mi>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> k </mi>  </msup>  </mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> m </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> m </mi>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> k </mi>  </msup>  </mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> m </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> m </mi>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> k </mi>  </msup>  </mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  <apply>  <sin />  <apply>  <times />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> SinhIntegral </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <plus />  <apply>  <ci> ExpIntegralEi </ci>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <ci> ExpIntegralEi </ci>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> ExpIntegralEi </ci>  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <ci> ExpIntegralEi </ci>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <ci> SinhIntegral </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> m </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> m </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  </apply>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> m </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <imaginaryi />  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> m </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> b </ci>  </apply>  </apply>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <factorial />  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["Sin", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]]]], " ", "z"]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["-", "n"]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]]], "]"]]]], "+", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["2", "+", "n"]], "]"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], "k"], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]]]], "m"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "a"]]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], "k"], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]]]], "m"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "a"]]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], "k"], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]]]], "m"]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]]]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "a"]]], ")"]], "m"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], "k"], " ", SuperscriptBox["z", "k"]]], RowBox[List["k", "!"]]]]]]], "m"]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |