
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/06.39.21.0064.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[z^n ExpIntegralEi[a z] SinhIntegral[a z], z] ==
(1/(n + 1)) (z^(1 + n) ExpIntegralEi[a z] + (-a)^(-1 - n)
Gamma[1 + n, (-a) z]) SinhIntegral[a z] - (a^(-1 - n)/(2 (1 + n)))
(((-1)^n Gamma[1 + n, (-a) z] + Gamma[1 + n, a z]) ExpIntegralEi[a z] -
(-1)^n n! ExpIntegralEi[2 a z] - n! Log[z] +
(-1)^n n! Sum[Gamma[k, -2 a z]/(2^k k!), {k, 1, n}] -
n! Sum[(a z)^k/(k k!), {k, 1, n}]) - (((-a)^(-1 - n) n!)/(2 (1 + n)))
(ExpIntegralEi[2 a z] - Log[z] -
Sum[(((-a) z)^k/k + Gamma[k, -2 a z]/2^k)/k!, {k, 1, n}]) /;
Element[n, Integers] && n >= 0
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["n", "+", "1"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "a"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]]], "]"]]]]]], ")"]], RowBox[List["SinhIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " "]], RowBox[List["2", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]]], "]"]]]], "+", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["a", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", " ", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], RowBox[List["ExpIntegralEi", "[", RowBox[List["2", " ", "a", " ", "z"]], "]"]]]], "-", " ", RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "k"]]], " ", RowBox[List["Gamma", "[", RowBox[List["k", ",", RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "z"]]]], "]"]]]], RowBox[List["k", "!"]]]]]]], "-", RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], "k"], RowBox[List["k", " ", RowBox[List["k", "!"]]]]]]]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "a"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["n", "!"]], " "]], RowBox[List["2", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], RowBox[List["(", " ", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List["2", " ", "a", " ", "z"]], "]"]], "-", RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["Sum", "[", RowBox[List[FractionBox[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", "z"]], ")"]], "k"], "k"], "+", RowBox[List[SuperscriptBox["2", RowBox[List["-", "k"]]], " ", RowBox[List["Gamma", "[", RowBox[List["k", ",", RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "z"]]]], "]"]]]]]], RowBox[List["k", "!"]]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "n"]], "}"]]]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Ei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Shi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Ei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Shi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mi> k </mi> </mfrac> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mo> ⁢ </mo> <mrow> <mi> Ei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> Ei </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Gamma </ci> <ci> k </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <ci> z </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Gamma </ci> <ci> k </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <ci> k </ci> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a_", " ", "z_"]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["1", "+", "n"]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "a"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]]], "]"]]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]], RowBox[List["n", "+", "1"]]], "-", FractionBox[RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]]], "]"]]]], "+", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "n"]], ",", RowBox[List["a", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["2", " ", "a", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["-", "k"]]], " ", RowBox[List["Gamma", "[", RowBox[List["k", ",", RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "z"]]]], "]"]]]], RowBox[List["k", "!"]]]]]]], "-", RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", "z"]], ")"]], "k"], RowBox[List["k", " ", RowBox[List["k", "!"]]]]]]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "a"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "n"]]], " ", RowBox[List["n", "!"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List["2", " ", "a", " ", "z"]], "]"]], "-", RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", "z"]], ")"]], "k"], "k"], "+", RowBox[List[SuperscriptBox["2", RowBox[List["-", "k"]]], " ", RowBox[List["Gamma", "[", RowBox[List["k", ",", RowBox[List[RowBox[List["-", "2"]], " ", "a", " ", "z"]]]], "]"]]]]]], RowBox[List["k", "!"]]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|