|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/06.42.03.0031.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Subfactorial[1/2] == I + (Sqrt[Pi] Erfc[I])/(2 E)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Subfactorial", "[", FractionBox["1", "2"], "]"]], "\[Equal]", RowBox[List["\[ImaginaryI]", "+", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Erfc", "[", "\[ImaginaryI]", "]"]]]], RowBox[List["2", " ", "\[ExponentialE]"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> Subfactorial </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mi> ⅈ </mi> <mo> + </mo> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ⅈ </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅇ </mi> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Subfactorial </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <imaginaryi /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfc </ci> <imaginaryi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <exponentiale /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Subfactorial", "[", FractionBox["1", "2"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["\[ImaginaryI]", "+", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Erfc", "[", "\[ImaginaryI]", "]"]]]], RowBox[List["2", " ", "\[ExponentialE]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|