Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AppellF1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > AppellF1[a,b1,b2,c,z1,z2] > Specific values > Values at fixed points > For fixed z1,z2





http://functions.wolfram.com/07.36.03.0018.01









  


  










Input Form





AppellF1[n + 1/2, 1/2, 1, n + 3/2, Subscript[z, 1], Subscript[z, 2]] == ((2 n + 1)/Sqrt[Subscript[z, 1]]) (ArcTanh[(Sqrt[Subscript[z, 1]] Sqrt[-1 + Subscript[z, 2]/Subscript[z, 1]])/ Sqrt[1 - Subscript[z, 1]]]/(Subscript[z, 2]^n Sqrt[-1 + Subscript[z, 2]/Subscript[z, 1]]) - Sum[(-1)^j Binomial[n, 1 + j] ((-2 Subscript[z, 1] + Subscript[z, 2])/ Subscript[z, 2])^(1 + j) Sum[(Binomial[1 + j, i] Subscript[z, 1]^i (Sum[(1/q!) ((Binomial[-1 + i, 2 q] Pochhammer[1/2, q] ((2 Subscript[z, 1] - Subscript[z, 2])/Subscript[z, 1])^(-1 + i - 2 q) Subscript[z, 2]^(2 q) (2 ArcSin[Sqrt[Subscript[z, 1]]] + Sqrt[1 - Subscript[z, 1]] Sqrt[Subscript[z, 1]] Sum[((-1 + p)! (1 - 2 Subscript[z, 1])^(-1 + 2 p))/ Pochhammer[1/2, p], {p, 1, q}]))/Subscript[z, 1]^(2 q)), {q, 0, Floor[(1/2) (-1 + i)]}] + Sum[2^(1 + 2 q) Binomial[-1 + i, 1 + 2 q] q! (1 - Subscript[z, 1])^(1/2 + q) Subscript[z, 1]^(-(1/2) - q) ((2 Subscript[z, 1] - Subscript[z, 2])/Subscript[z, 1])^(-2 + i - 2 q) Subscript[z, 2]^(1 + 2 q) Sum[(1 - 2 Subscript[z, 1])^(2 p)/(2^(2 p) (1 - Subscript[z, 1])^ p Subscript[z, 1]^p (p! Pochhammer[3/2, -p + q])), {p, 0, q}], {q, 0, -1 + Floor[i/2]}]))/ (-2 Subscript[z, 1] + Subscript[z, 2])^i, {i, 0, 1 + j}], {j, 0, -1 + n}]/(2^n Subscript[z, 1]^n))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["n", "+", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", "1", ",", RowBox[List["n", "+", FractionBox["3", "2"]]], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], " ", "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "n"]], "+", "1"]], SqrtBox[SubscriptBox["z", "1"]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[SubscriptBox["z", "1"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[SubscriptBox["z", "2"], SubscriptBox["z", "1"]]]]]]], SqrtBox[RowBox[List["1", "-", SubscriptBox["z", "1"]]]]], "]"]], " ", SubsuperscriptBox["z", "2", RowBox[List["-", "n"]]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[SubscriptBox["z", "2"], SubscriptBox["z", "1"]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["-", "n"]]], " ", SubsuperscriptBox["z", "1", RowBox[List["-", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List["1", "+", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["z", "1"]]], "+", SubscriptBox["z", "2"]]], SubscriptBox["z", "2"]], ")"]], RowBox[List["1", "+", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["1", "+", "j"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["1", "+", "j"]], ",", "i"]], "]"]], " ", SubsuperscriptBox["z", "1", "i"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["z", "1"]]], "+", SubscriptBox["z", "2"]]], ")"]], RowBox[List["-", "i"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ")"]]]], "]"]]], RowBox[List[FractionBox["1", RowBox[List["q", "!"]]], RowBox[List["(", RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ",", RowBox[List["2", " ", "q"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "q"]], "]"]], " ", SubsuperscriptBox["z", "1", RowBox[List[RowBox[List["-", "2"]], " ", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", " ", SubscriptBox["z", "1"]]], "-", SubscriptBox["z", "2"]]], SubscriptBox["z", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "i", "-", RowBox[List["2", " ", "q"]]]]], " ", SubsuperscriptBox["z", "2", RowBox[List["2", " ", "q"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["ArcSin", "[", SqrtBox[SubscriptBox["z", "1"]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SubscriptBox["z", "1"]]]], " ", SqrtBox[SubscriptBox["z", "1"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "q"], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "p"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", SubscriptBox["z", "1"]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "p"]]]]]]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "p"]], "]"]]]]]]]]], ")"]]]], ")"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Floor", "[", FractionBox["i", "2"], "]"]]]]], RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["2", " ", "q"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "q"]]]]]], "]"]], " ", RowBox[List["q", "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["z", "1"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "q"]]], " ", SubsuperscriptBox["z", "1", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", " ", SubscriptBox["z", "1"]]], "-", SubscriptBox["z", "2"]]], SubscriptBox["z", "1"]], ")"]], RowBox[List[RowBox[List["-", "2"]], "+", "i", "-", RowBox[List["2", " ", "q"]]]]], " ", SubsuperscriptBox["z", "2", RowBox[List["1", "+", RowBox[List["2", " ", "q"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "q"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "p"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", SubscriptBox["z", "1"]]]]], ")"]], RowBox[List["2", " ", "p"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["z", "1"]]], ")"]], RowBox[List["-", "p"]]], " ", SubsuperscriptBox["z", "1", RowBox[List["-", "p"]]]]], RowBox[List[RowBox[List["p", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[RowBox[List["-", "p"]], "+", "q"]]]], "]"]]]]]]]]]]]]], ")"]]]]]]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <msubsup> <mi> z </mi> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msubsup> <msqrt> <mrow> <mfrac> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> i </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;i&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> i </mi> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> i </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> q </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;q&quot;]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> q </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;q&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> q </mi> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> p </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;p&quot;], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> i </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;i&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;q&quot;]], &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> q </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> q </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> q </mi> </munderover> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mo> - </mo> <mi> p </mi> </mrow> </msubsup> </mrow> <mrow> <mrow> <mi> p </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;)&quot;]], RowBox[List[&quot;q&quot;, &quot;-&quot;, &quot;p&quot;]]], Pochhammer] </annotation> </semantics> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> AppellF1 </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <ci> i </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> i </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> q </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> q </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arcsin /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> p </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <floor /> <apply> <times /> <ci> i </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> q </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -2 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> p </ci> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["n_", "+", FractionBox["1", "2"]]], ",", FractionBox["1", "2"], ",", "1", ",", RowBox[List["n_", "+", FractionBox["3", "2"]]], ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[SubscriptBox["zz", "1"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[SubscriptBox["zz", "2"], SubscriptBox["zz", "1"]]]]]]], SqrtBox[RowBox[List["1", "-", SubscriptBox["zz", "1"]]]]], "]"]], " ", SubsuperscriptBox["zz", "2", RowBox[List["-", "n"]]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[SubscriptBox["zz", "2"], SubscriptBox["zz", "1"]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List["-", "n"]]], " ", SubsuperscriptBox["zz", "1", RowBox[List["-", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List["1", "+", "j"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["zz", "1"]]], "+", SubscriptBox["zz", "2"]]], SubscriptBox["zz", "2"]], ")"]], RowBox[List["1", "+", "j"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["1", "+", "j"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["1", "+", "j"]], ",", "i"]], "]"]], " ", SubsuperscriptBox["zz", "1", "i"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SubscriptBox["zz", "1"]]], "+", SubscriptBox["zz", "2"]]], ")"]], RowBox[List["-", "i"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ")"]]]], "]"]]], FractionBox[RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ",", RowBox[List["2", " ", "q"]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "q"]], "]"]], " ", SubsuperscriptBox["zz", "1", RowBox[List[RowBox[List["-", "2"]], " ", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", " ", SubscriptBox["zz", "1"]]], "-", SubscriptBox["zz", "2"]]], SubscriptBox["zz", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "i", "-", RowBox[List["2", " ", "q"]]]]], " ", SubsuperscriptBox["zz", "2", RowBox[List["2", " ", "q"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["ArcSin", "[", SqrtBox[SubscriptBox["zz", "1"]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", SubscriptBox["zz", "1"]]]], " ", SqrtBox[SubscriptBox["zz", "1"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "1"]], "q"], FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "p"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", SubscriptBox["zz", "1"]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "p"]]]]]]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "p"]], "]"]]]]]]]]], ")"]]]], RowBox[List["q", "!"]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Floor", "[", FractionBox["i", "2"], "]"]]]]], RowBox[List[SuperscriptBox["2", RowBox[List["1", "+", RowBox[List["2", " ", "q"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "i"]], ",", RowBox[List["1", "+", RowBox[List["2", " ", "q"]]]]]], "]"]], " ", RowBox[List["q", "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "q"]]], " ", SubsuperscriptBox["zz", "1", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["2", " ", SubscriptBox["zz", "1"]]], "-", SubscriptBox["zz", "2"]]], SubscriptBox["zz", "1"]], ")"]], RowBox[List[RowBox[List["-", "2"]], "+", "i", "-", RowBox[List["2", " ", "q"]]]]], " ", SubsuperscriptBox["zz", "2", RowBox[List["1", "+", RowBox[List["2", " ", "q"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "q"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], " ", "p"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", SubscriptBox["zz", "1"]]]]], ")"]], RowBox[List["2", " ", "p"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List["-", "p"]]], " ", SubsuperscriptBox["zz", "1", RowBox[List["-", "p"]]]]], RowBox[List[RowBox[List["p", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[RowBox[List["-", "p"]], "+", "q"]]]], "]"]]]]]]]]]]]]], ")"]]]]]]]]]]]]]], ")"]]]], SqrtBox[SubscriptBox["zz", "1"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02