|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.36.03.0020.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AppellF1[5/2, 3, 1, 7/2, Subscript[z, 1], Subscript[z, 2]] ==
(5/(8 (-1 + Subscript[z, 1])^2 Subscript[z, 1]^(3/2)
(Subscript[z, 1] - Subscript[z, 2])^3))
(ArcTanh[Sqrt[Subscript[z, 1]]] (-1 + Subscript[z, 1])^2
(3 Subscript[z, 1]^2 + 6 Subscript[z, 1] Subscript[z, 2] -
Subscript[z, 2]^2) + Sqrt[Subscript[z, 1]] (5 Subscript[z, 1]^3 -
8 ArcTanh[Sqrt[Subscript[z, 2]]] (-1 + Subscript[z, 1])^2
Subscript[z, 1] Sqrt[Subscript[z, 2]] + Subscript[z, 2]^2 +
Subscript[z, 1] Subscript[z, 2] (2 + Subscript[z, 2]) -
3 Subscript[z, 1]^2 (1 + 2 Subscript[z, 2])))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["AppellF1", "[", RowBox[List[FractionBox["5", "2"], ",", "3", ",", "1", ",", FractionBox["7", "2"], ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Equal]", RowBox[List[FractionBox["5", RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["z", "1"]]], ")"]], "2"], " ", SubsuperscriptBox["z", "1", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["z", "1"], "-", SubscriptBox["z", "2"]]], ")"]], "3"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["ArcTanh", "[", SqrtBox[SubscriptBox["z", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["z", "1"]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SubsuperscriptBox["z", "1", "2"]]], "+", RowBox[List["6", " ", SubscriptBox["z", "1"], " ", SubscriptBox["z", "2"]]], "-", SubsuperscriptBox["z", "2", "2"]]], ")"]]]], "+", RowBox[List[SqrtBox[SubscriptBox["z", "1"]], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SubsuperscriptBox["z", "1", "3"]]], "-", RowBox[List["8", " ", RowBox[List["ArcTanh", "[", SqrtBox[SubscriptBox["z", "2"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["z", "1"]]], ")"]], "2"], " ", SubscriptBox["z", "1"], " ", SqrtBox[SubscriptBox["z", "2"]]]], "+", SubsuperscriptBox["z", "2", "2"], "+", RowBox[List[SubscriptBox["z", "1"], " ", SubscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["z", "2"]]], ")"]]]], "-", RowBox[List["3", " ", SubsuperscriptBox["z", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SubscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mn> 3 </mn> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 5 </mn> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </msqrt> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> AppellF1 </ci> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='integer'> 3 </cn> <cn type='integer'> 1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <arctanh /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <arctanh /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AppellF1", "[", RowBox[List[FractionBox["5", "2"], ",", "3", ",", "1", ",", FractionBox["7", "2"], ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["ArcTanh", "[", SqrtBox[SubscriptBox["zz", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["zz", "1"]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SubsuperscriptBox["zz", "1", "2"]]], "+", RowBox[List["6", " ", SubscriptBox["zz", "1"], " ", SubscriptBox["zz", "2"]]], "-", SubsuperscriptBox["zz", "2", "2"]]], ")"]]]], "+", RowBox[List[SqrtBox[SubscriptBox["zz", "1"]], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SubsuperscriptBox["zz", "1", "3"]]], "-", RowBox[List["8", " ", RowBox[List["ArcTanh", "[", SqrtBox[SubscriptBox["zz", "2"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["zz", "1"]]], ")"]], "2"], " ", SubscriptBox["zz", "1"], " ", SqrtBox[SubscriptBox["zz", "2"]]]], "+", SubsuperscriptBox["zz", "2", "2"], "+", RowBox[List[SubscriptBox["zz", "1"], " ", SubscriptBox["zz", "2"], " ", RowBox[List["(", RowBox[List["2", "+", SubscriptBox["zz", "2"]]], ")"]]]], "-", RowBox[List["3", " ", SubsuperscriptBox["zz", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SubscriptBox["zz", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["8", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["zz", "1"]]], ")"]], "2"], " ", SubsuperscriptBox["zz", "1", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["zz", "1"], "-", SubscriptBox["zz", "2"]]], ")"]], "3"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|