Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AppellF1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > AppellF1[a,b1,b2,c,z1,z2] > Series representations > Residue representations





http://functions.wolfram.com/07.36.06.0021.01









  


  










Input Form





AppellF1[a, Subscript[b, 1], Subscript[b, 2], c, Subscript[z, 1], Subscript[z, 2]] == (Gamma[c]/(Gamma[a] Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])) Sum[Residue[((Gamma[a - s - t] Gamma[Subscript[b, 1] - s] Gamma[Subscript[b, 2] - t])/((-Subscript[z, 1])^s (-Subscript[z, 2])^t Gamma[c - s - t])) Gamma[s] Gamma[t], {s, -j}, {t, -k}], {k, 0, Infinity}, {j, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["AppellF1", "[", RowBox[List["a", ",", SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", "c", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["Gamma", "[", "c", "]"]], RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "-", "s", "-", "t"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", "t"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "1"]]], ")"]], RowBox[List["-", "s"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "2"]]], ")"]], RowBox[List["-", "t"]]]]], RowBox[List["Gamma", "[", RowBox[List["c", "-", "s", "-", "t"]], "]"]]], RowBox[List["Gamma", "[", "s", "]"]], RowBox[List["Gamma", "[", "t", "]"]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["-", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List["t", ",", RowBox[List["-", "k"]]]], "}"]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mrow> <mi> s </mi> <mo> , </mo> <mi> t </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> s </mi> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> s </mi> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mrow> <mtext> </mtext> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mrow> <mi> s </mi> <mo> , </mo> <mi> t </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> s </mi> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> s </mi> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["AppellF1", "[", RowBox[List["a_", ",", SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", "c_", ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "-", "s", "-", "t"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", "t"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List["-", "s"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "2"]]], ")"]], RowBox[List["-", "t"]]]]], ")"]], " ", RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", "t", "]"]]]], RowBox[List["Gamma", "[", RowBox[List["c", "-", "s", "-", "t"]], "]"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["-", "j"]]]], "}"]], ",", RowBox[List["{", RowBox[List["t", ",", RowBox[List["-", "k"]]]], "}"]]]], "]"]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29