Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ChebyshevT






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ChebyshevT[nu,z] > Series representations > Residue representations > General case > Expansions at z==1





http://functions.wolfram.com/07.04.06.0081.01









  


  










Input Form





ChebyshevT[\[Nu], z] == ((2^(-1 - \[Nu]) (-1 + z)^\[Nu] \[Nu])/Sqrt[Pi]) (Sum[Residue[((Gamma[s] Gamma[1/2 - s - \[Nu]])/((2/(z - 1))^s Gamma[1 - s - 2 \[Nu]])) Gamma[-s - \[Nu]], {s, j - \[Nu]}], {j, 0, Infinity}] + Sum[Residue[((Gamma[s] Gamma[-s - \[Nu]])/ ((2/(z - 1))^s Gamma[1 - s - 2 \[Nu]])) Gamma[1/2 - s - \[Nu]], {s, 1/2 + j - \[Nu]}], {j, 0, Infinity}]) - ((2^(-1 + \[Nu]) \[Nu])/((-1 + z)^\[Nu] Sqrt[Pi])) (Sum[Residue[((Gamma[s] Gamma[1/2 - s + \[Nu]])/((2/(z - 1))^s Gamma[1 - s + 2 \[Nu]])) Gamma[-s + \[Nu]], {s, j + \[Nu]}], {j, 0, Infinity}] + Sum[Residue[((Gamma[s] Gamma[-s + \[Nu]])/ ((2/(z - 1))^s Gamma[1 - s + 2 \[Nu]])) Gamma[1/2 - s + \[Nu]], {s, 1/2 + j + \[Nu]}], {j, 0, Infinity}]) /; Abs[z - 1] < 2 && !Element[2 \[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "\[Nu]"], " ", "\[Nu]"]], SqrtBox["\[Pi]"]], RowBox[List["(", RowBox[List[RowBox[List["Sum", "[", RowBox[List[RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s", "-", "\[Nu]"]], "]"]], SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["z", "-", "1"]]], ")"]], RowBox[List["-", "s"]]]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "s"]], "-", "\[Nu]"]], "]"]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["j", "-", "\[Nu]"]]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List["j", ",", "0", ",", InterpretationBox["\[Infinity]", DirectedInfinity[1]]]], "}"]]]], "]"]], "+", RowBox[List["Sum", "[", RowBox[List[RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "s"]], "-", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["z", "-", "1"]]], ")"]], RowBox[List["-", "s"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s", "-", "\[Nu]"]], "]"]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List[FractionBox["1", "2"], "+", "j", "-", "\[Nu]"]]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List["j", ",", "0", ",", InterpretationBox["\[Infinity]", DirectedInfinity[1]]]], "}"]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", "\[Nu]"]], SqrtBox["\[Pi]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sum", "[", RowBox[List[RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s", "+", "\[Nu]"]], "]"]], SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["z", "-", "1"]]], ")"]], RowBox[List["-", "s"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s", "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "s"]], "+", "\[Nu]"]], "]"]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["j", "+", "\[Nu]"]]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List["j", ",", "0", ",", InterpretationBox["\[Infinity]", DirectedInfinity[1]]]], "}"]]]], "]"]], "+", RowBox[List["Sum", "[", RowBox[List[RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "s"]], "+", "\[Nu]"]], "]"]], SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["z", "-", "1"]]], ")"]], RowBox[List["-", "s"]]]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s", "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s", "+", "\[Nu]"]], "]"]]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List[FractionBox["1", "2"], "+", "j", "+", "\[Nu]"]]]], "}"]]]], "]"]], ",", RowBox[List["{", RowBox[List["j", ",", "0", ",", InterpretationBox["\[Infinity]", DirectedInfinity[1]]]], "}"]]]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["z", "-", "1"]], "]"]], "<", "2"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List["2", "\[Nu]"]], ",", "Integers"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> T </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <semantics> <mi> &#8734; </mi> <annotation-xml encoding='MathML-Content'> <infinity /> </annotation-xml> </semantics> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <semantics> <mi> &#8734; </mi> <annotation-xml encoding='MathML-Content'> <infinity /> </annotation-xml> </semantics> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <semantics> <mi> &#8734; </mi> <annotation-xml encoding='MathML-Content'> <infinity /> </annotation-xml> </semantics> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <semantics> <mi> &#8734; </mi> <annotation-xml encoding='MathML-Content'> <infinity /> </annotation-xml> </semantics> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 2 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ChebyshevT </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> &#957; </ci> </apply> <ci> &#957; </ci> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <ci> DirectedInfinity </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <ci> DirectedInfinity </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> &#957; </ci> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <ci> DirectedInfinity </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> j </ci> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <ci> DirectedInfinity </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> j </ci> <ci> &#957; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "\[Nu]"], " ", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s", "-", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["z", "-", "1"]]], ")"]], RowBox[List["-", "s"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "s"]], "-", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["j", "-", "\[Nu]"]]]], "}"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "s"]], "-", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["z", "-", "1"]]], ")"]], RowBox[List["-", "s"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s", "-", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s", "-", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List[FractionBox["1", "2"], "+", "j", "-", "\[Nu]"]]]], "}"]]]], "]"]]]]]], ")"]]]], SqrtBox["\[Pi]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List["-", "\[Nu]"]]], " ", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["z", "-", "1"]]], ")"]], RowBox[List["-", "s"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "s"]], "+", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s", "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List["j", "+", "\[Nu]"]]]], "}"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List["Residue", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "s"]], "+", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["2", RowBox[List["z", "-", "1"]]], ")"]], RowBox[List["-", "s"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "s", "+", "\[Nu]"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "s", "+", RowBox[List["2", " ", "\[Nu]"]]]], "]"]]], ",", RowBox[List["{", RowBox[List["s", ",", RowBox[List[FractionBox["1", "2"], "+", "j", "+", "\[Nu]"]]]], "}"]]]], "]"]]]]]], ")"]]]], SqrtBox["\[Pi]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["z", "-", "1"]], "]"]], "<", "2"]], "&&", RowBox[List["!", RowBox[List[RowBox[List["2", " ", "\[Nu]"]], "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02