|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.04.13.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[2][w][\[Nu]] + ArcCos[z]^2 w[\[Nu]] == 0 /;
w[\[Nu]] == ChebyshevT[\[Nu], z] && w[0] == 1 && Derivative[1][w][0] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "\[Nu]", "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["ArcCos", "[", "z", "]"]], "2"], RowBox[List["w", " ", "[", "\[Nu]", "]"]]]]]], "\[Equal]", "0"]], " ", "/;", " ", RowBox[List[RowBox[List[RowBox[List["w", "[", "\[Nu]", "]"]], "\[Equal]", RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[And]", RowBox[List[RowBox[List["w", "[", "0", "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List[RowBox[List[RowBox[List["w", "'"]], "[", "0", "]"]], "\[Equal]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mi> ′′ </mi> </msup> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> ν </mi> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <msub> <mi> T </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo>  </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> ν </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> ν </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <arccos /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> w </ci> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> w </ci> <ci> ν </ci> </apply> <apply> <ci> ChebyshevT </ci> <ci> ν </ci> <ci> z </ci> </apply> </apply> <apply> <eq /> <apply> <ci> w </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> w </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "\[Nu]_", "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["ArcCos", "[", "z_", "]"]], "2"], " ", RowBox[List["w", "[", "\[Nu]_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List[RowBox[List["w", "[", "\[Nu]", "]"]], "\[Equal]", RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "&&", RowBox[List[RowBox[List["w", "[", "0", "]"]], "\[Equal]", "1"]], "&&", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "0", "]"]], "\[Equal]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|