|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.04.21.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^(\[Alpha] - 1) ChebyshevT[\[Nu], z], z] ==
2^(-1 - \[Alpha]) z^(\[Alpha] - 1) (ChebyshevT[\[Alpha] - 1, z] +
I Sqrt[1 - z^2] ChebyshevU[\[Alpha] - 2, z])
(z (z + I Sqrt[1 - z^2]))^(1 - \[Alpha])
((1/(\[Alpha] - \[Nu])) ((ChebyshevT[\[Nu] - \[Alpha], z] +
I Sqrt[1 - z^2] ChebyshevU[\[Nu] - \[Alpha] - 1, z])
Hypergeometric2F1[(\[Nu] - \[Alpha])/2, 1 - \[Alpha],
1 + (\[Nu] - \[Alpha])/2, 1 - 2 z^2 - 2 I z Sqrt[1 - z^2]]) +
(1/(2 + \[Nu] - \[Alpha])) ((ChebyshevT[2 + \[Nu] - \[Alpha], z] +
I Sqrt[1 - z^2] ChebyshevU[1 + \[Nu] - \[Alpha], z])
Hypergeometric2F1[1 + (\[Nu] - \[Alpha])/2, 1 - \[Alpha],
2 + (\[Nu] - \[Alpha])/2, 1 - 2 z^2 - 2 I z Sqrt[1 - z^2]]) +
(1/(\[Nu] + \[Alpha])) ((ChebyshevT[\[Nu] + \[Alpha], z] -
I Sqrt[1 - z^2] ChebyshevU[\[Nu] + \[Alpha] - 1, z])
Hypergeometric2F1[-((\[Nu] + \[Alpha])/2), 1 - \[Alpha],
1 - (\[Nu] + \[Alpha])/2, 1 - 2 z^2 - 2 I z Sqrt[1 - z^2]]) -
(1/(\[Nu] + \[Alpha] - 2)) ((ChebyshevT[2 - \[Nu] - \[Alpha], z] +
I Sqrt[1 - z^2] ChebyshevU[1 - \[Nu] - \[Alpha], z])
Hypergeometric2F1[1 - (\[Nu] + \[Alpha])/2, 1 - \[Alpha],
2 - (\[Nu] + \[Alpha])/2, 1 - 2 z^2 - 2 I z Sqrt[1 - z^2]]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Alpha]"]]], " ", SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "1"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "2"]], ",", "z"]], "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]], ")"]]]], ")"]], RowBox[List["1", "-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["\[Alpha]", "-", "\[Nu]"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "\[Alpha]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], " ", ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2", "+", "\[Nu]", "-", "\[Alpha]"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["2", "+", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], " ", ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["2", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["\[Nu]", "+", "\[Alpha]"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Alpha]"]], ",", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Alpha]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["\[Nu]", "+", "\[Alpha]", "-", "2"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["2", "-", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> T </mi> <mi> ν </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> α </mi> <mo> - </mo> <mi> ν </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mi> ν </mi> <mo> - </mo> <mi> α </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> + </mo> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> ν </mi> <mo> - </mo> <mi> α </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> ν </mi> <mo> - </mo> <mi> α </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "\[Alpha]"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"], "+", "1"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", "z"]], "+", "1"]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List["\[Alpha]", "+", "\[Nu]"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "\[Alpha]"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[Alpha]", "+", "\[Nu]"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", "z"]], "+", "1"]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> ν </mi> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> ν </mi> <mo> - </mo> <mi> α </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> ν </mi> <mo> - </mo> <mi> α </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"], "+", "1"]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "\[Alpha]"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"], "+", "2"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", "z"]], "+", "1"]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> T </mi> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> α </mi> <mo> - </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> <mo> - </mo> <mi> ν </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mi> α </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox[RowBox[List["\[Alpha]", "+", "\[Nu]"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "\[Alpha]"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox[RowBox[List["\[Alpha]", "+", "\[Nu]"]], "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", "z"]], "+", "1"]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> ChebyshevT </ci> <ci> ν </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> α </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> α </ci> <ci> ν </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <ci> ν </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <ci> ν </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> <cn type='integer'> -2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> α </ci> <ci> ν </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["ChebyshevT", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Alpha]"]]], " ", SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "1"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Alpha]", "-", "2"]], ",", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", " ", RowBox[List["(", RowBox[List["z", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]], ")"]]]], ")"]], RowBox[List["1", "-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "-", "\[Alpha]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], RowBox[List["\[Alpha]", "-", "\[Nu]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["2", "+", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["2", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], RowBox[List["2", "+", "\[Nu]", "-", "\[Alpha]"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Alpha]"]], ",", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Alpha]", "-", "1"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[Nu]", "+", "\[Alpha]"]], ")"]]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["1", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], RowBox[List["\[Nu]", "+", "\[Alpha]"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List[RowBox[List["2", "-", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]", "-", "\[Alpha]"]], ",", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", "\[Alpha]"]], ",", RowBox[List["2", "-", FractionBox[RowBox[List["\[Nu]", "+", "\[Alpha]"]], "2"]]], ",", RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "z", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]], "]"]]]], RowBox[List["\[Nu]", "+", "\[Alpha]", "-", "2"]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|