|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.38.02.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ClebschGordan[{Subscript[j, 1], Subscript[m, 1]},
{Subscript[j, 2], Subscript[m, 2]}, {j, m}] ==
KroneckerDelta[m, Subscript[m, 1] + Subscript[m, 2]]
((Sqrt[1 + 2 j] Sqrt[(j + Subscript[j, 1] - Subscript[j, 2])!]
Sqrt[(j - Subscript[j, 1] + Subscript[j, 2])!] Sqrt[(j - m)!]
Sqrt[(j + m)!] Sqrt[(Subscript[j, 1] + Subscript[m, 1])!]
Sqrt[(Subscript[j, 2] - Subscript[m, 2])!])/
(Sqrt[(Subscript[j, 1] + Subscript[j, 2] - j)!]
Sqrt[(Subscript[j, 1] + Subscript[j, 2] + j + 1)!]
Sqrt[(Subscript[j, 1] - Subscript[m, 1])!]
Sqrt[(Subscript[j, 2] + Subscript[m, 2])!]))
HypergeometricPFQRegularized[{j - Subscript[j, 1] - Subscript[j, 2],
-Subscript[j, 1] + Subscript[m, 1], -Subscript[j, 2] - Subscript[m, 2]},
{1 + j - Subscript[j, 2] + Subscript[m, 1], 1 + j - Subscript[j, 1] -
Subscript[m, 2]}, 1] /; \[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\
\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ][
{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]},
{j, m}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]]]], "]"]], RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]], ")"]], "!"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]], "!"]]]]], ")"]]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["m", "1"]]], ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "-", SubscriptBox["m", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "j", "-", SubscriptBox["j", "2"], "+", SubscriptBox["m", "1"]]], ",", RowBox[List["1", "+", "j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["m", "2"]]]]], "}"]], ",", "1"]], "]"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> j </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mi> m </mi> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", SubscriptBox["m", "1"], "\[MediumSpace]", SubscriptBox["m", "2"]]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", "j", "\[MediumSpace]", "m"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </msub> <mo> ⁢ </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["m", "1"], "-", SubscriptBox["j", "1"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "-", SubscriptBox["m", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["j", "-", SubscriptBox["j", "2"], "+", SubscriptBox["m", "1"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["m", "2"], "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> m </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </list> <list> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "j"]]]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]], ")"]], "!"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["mm", "1"]]], ",", RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "-", SubscriptBox["mm", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "j", "-", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "1"]]], ",", RowBox[List["1", "+", "j", "-", SubscriptBox["j", "1"], "-", SubscriptBox["mm", "2"]]]]], "}"]], ",", "1"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]], "!"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|