Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ClebschGordan






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ClebschGordan[{j1,m1},{j2,m2},{j,m}] > Series representations > Generalized power series





http://functions.wolfram.com/07.38.06.0001.02









  


  










Input Form





ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {j, m}] == (KroneckerDelta[m, Subscript[m, 1] + Subscript[m, 2]]/ Sqrt[(j + Subscript[j, 1] + Subscript[j, 2] + 1)!]) Sqrt[(-j + Subscript[j, 1] + Subscript[j, 2])!] Sqrt[(j + Subscript[j, 1] - Subscript[j, 2])!] Sqrt[(j - Subscript[j, 1] + Subscript[j, 2])!] Sqrt[2 j + 1] Sqrt[(Subscript[j, 1] + Subscript[m, 1])!] Sqrt[(Subscript[j, 1] - Subscript[m, 1])!] Sqrt[(Subscript[j, 2] + Subscript[m, 2])!] Sqrt[(Subscript[j, 2] - Subscript[m, 2])!] Sqrt[(j + m)!] Sqrt[(j - m)!] Sum[(-1)^k/(k! (-j - k + Subscript[j, 1] + Subscript[j, 2])! (-k + Subscript[j, 1] - Subscript[m, 1])! (-k + Subscript[j, 2] + Subscript[m, 2])! (j + k - Subscript[j, 2] + Subscript[m, 1])! (j + k - Subscript[j, 1] - Subscript[m, 2])!), {k, 0, Infinity}] /; \[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\ \[ScriptA]\[ScriptL]\[ScriptCapitalQ][{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {j, m}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]]]], "]"]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "1"]], ")"]], "!"]]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "m"]], ")"]], "!"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], InterpretationBox["\[Infinity]", DirectedInfinity[1]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], "/", RowBox[List["(", RowBox[List[RowBox[List["k", "!"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "-", "k", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "k"]], "+", SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "k"]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "k", "-", SubscriptBox["j", "2"], "+", SubscriptBox["m", "1"]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "k", "-", SubscriptBox["j", "1"], "-", SubscriptBox["m", "2"]]], ")"]], "!"]]]], ")"]]]]]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> j </mi> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> m </mi> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;2&quot;]]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;j&quot;, &quot;\[MediumSpace]&quot;, &quot;m&quot;]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </msub> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <semantics> <mi> &#8734; </mi> <annotation-xml encoding='MathML-Content'> <infinity /> </annotation-xml> </semantics> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> <apply> <times /> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> m </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <ci> DirectedInfinity </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> &#119979;&#119997;&#120014;&#120008;&#119998;&#119992;&#119990;&#8467;&#119980; </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]]]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "m"]], ")"]], "!"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "-", "k", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "k"]], "+", SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "k"]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "k", "-", SubscriptBox["j", "2"], "+", SubscriptBox["mm", "1"]]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["j", "+", "k", "-", SubscriptBox["j", "1"], "-", SubscriptBox["mm", "2"]]], ")"]], "!"]]]]]]]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "1"]], ")"]], "!"]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29