|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.38.06.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ClebschGordan[{Subscript[j, 1], Subscript[m, 1]},
{Subscript[j, 2], Subscript[m, 2]}, {j, m}] ==
KroneckerDelta[m, Subscript[m, 1] + Subscript[m, 2]]
((Sqrt[Binomial[2 Subscript[j, 1], Subscript[j, 1] + Subscript[j, 2] - j]]
Sqrt[Binomial[2 Subscript[j, 2], Subscript[j, 1] + Subscript[j, 2] -
j]])/(Sqrt[Binomial[Subscript[j, 1] + Subscript[j, 2] + j + 1,
Subscript[j, 1] + Subscript[j, 2] - j]]
Sqrt[Binomial[2 Subscript[j, 1], Subscript[j, 1] - Subscript[m, 1]]]
Sqrt[Binomial[2 Subscript[j, 2], Subscript[j, 2] - Subscript[m, 2]]]
Sqrt[Binomial[2 j, j - m]]))
Sum[(-1)^k Binomial[Subscript[j, 1] + Subscript[j, 2] - j, k]
Binomial[Subscript[j, 1] - Subscript[j, 2] + j,
Subscript[j, 1] - Subscript[m, 1] - k]
Binomial[-Subscript[j, 1] + Subscript[j, 2] + j,
Subscript[j, 2] + Subscript[m, 2] - k],
{k, Max[0, Subscript[j, 2] - j - Subscript[m, 1],
Subscript[j, 1] - j + Subscript[m, 2]],
Min[Subscript[j, 1] + Subscript[j, 2] - j, Subscript[j, 1] -
Subscript[m, 1], Subscript[j, 2] + Subscript[m, 2]]}] /;
\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\
\[ScriptA]\[ScriptL]\[ScriptCapitalQ][{Subscript[j, 1], Subscript[m, 1]},
{Subscript[j, 2], Subscript[m, 2]}, {j, m}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]]]], "]"]]], SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", "j"]], ",", RowBox[List["j", "-", "m"]]]], "]"]]]]], ")"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List["0", ",", RowBox[List[SubscriptBox["j", "2"], "-", "j", "-", SubscriptBox["m", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", "j", "+", SubscriptBox["m", "2"]]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ",", "k"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"], "-", "k"]]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"], "-", "k"]]]], "]"]]]]]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> j </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mi> m </mi> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", SubscriptBox["m", "1"], "\[MediumSpace]", SubscriptBox["m", "2"]]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", "j", "\[MediumSpace]", "m"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msub> <mi> δ </mi> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </msub> <mo> ⁢ </mo> <mfrac> <mrow> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "1"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List["-", "j"]], "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> ⁢ </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List["-", "j"]], "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> </mrow> <mrow> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "1"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List["-", "j"]], "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> ⁢ </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "1"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> ⁢ </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> <mo> ⁢ </mo> <msqrt> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["2", " ", "j"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["j", "-", "m"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mi> max </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["-", "j"]], "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List["-", "k"]], "+", SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["j", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List[RowBox[List["-", "k"]], "+", SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> δ </ci> <ci> m </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Binomial </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <max /> <cn type='integer'> 0 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <min /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["Max", "[", RowBox[List["0", ",", RowBox[List[SubscriptBox["j", "2"], "-", "j", "-", SubscriptBox["mm", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", "j", "+", SubscriptBox["mm", "2"]]]]], "]"]]]], RowBox[List["Min", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ",", "k"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"], "-", "k"]]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]], ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"], "-", "k"]]]], "]"]]]]]]]], RowBox[List[SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]], ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "1"]]], ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", SubscriptBox["j", "2"]]], ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]]]], "]"]]], " ", SqrtBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List["2", " ", "j"]], ",", RowBox[List["j", "-", "m"]]]], "]"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|