
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.38.07.0005.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
ClebschGordan[{Subscript[j, 1], Subscript[m, 1]},
{Subscript[j, 2], Subscript[m, 2]}, {j, m}] ==
KroneckerDelta[m, Subscript[m, 1] + Subscript[m, 2]]
(((-1)^(j + m) (2 I)^(j + Subscript[j, 1] + Subscript[j, 2]))/Pi^2)
((Sqrt[2 j + 1] Sqrt[(j - m)!] Sqrt[(j + m)!]
Sqrt[(Subscript[j, 1] - Subscript[m, 1])!]
Sqrt[(Subscript[j, 1] + Subscript[m, 1])!]
Sqrt[(Subscript[j, 2] - Subscript[m, 2])!]
Sqrt[(Subscript[j, 2] + Subscript[m, 2])!])/
(Sqrt[(j + Subscript[j, 1] - Subscript[j, 2])!]
Sqrt[(j - Subscript[j, 1] + Subscript[j, 2])!]
Sqrt[(Subscript[j, 1] + Subscript[j, 2] - j)!]
Sqrt[(j + Subscript[j, 1] + Subscript[j, 2] + 1)!]))
Integrate[E^(2 I Subscript[m, 1] \[CurlyPhi] + 2 I Subscript[m, 2]
\[CurlyTheta]) Sin[\[CurlyTheta]]^(j + Subscript[j, 2] -
Subscript[j, 1]) Sin[\[CurlyTheta] - \[CurlyPhi]]^
(Subscript[j, 1] + Subscript[j, 2] - j) Sin[\[CurlyPhi]]^
(j + Subscript[j, 1] - Subscript[j, 2]), {\[CurlyTheta], -(Pi/2),
Pi/2}, {\[CurlyPhi], -(Pi/2), Pi/2}] /; \[ScriptCapitalP]\[ScriptH]\
\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ][
{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]},
{j, m}]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["m", "1"], "+", SubscriptBox["m", "2"]]]]], "]"]], " ", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]"]], ")"]], RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]]]]], SuperscriptBox["\[Pi]", "2"]], FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", "j"]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]], "!"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "1"]], ")"]], "!"]]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", FractionBox["\[Pi]", "2"]]], FractionBox["\[Pi]", "2"]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", FractionBox["\[Pi]", "2"]]], FractionBox["\[Pi]", "2"]], RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SubscriptBox["m", "1"], " ", "\[CurlyPhi]"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SubscriptBox["m", "2"], " ", "\[CurlyTheta]"]]]]], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], RowBox[List["j", "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "1"]]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["\[CurlyTheta]", "-", "\[CurlyPhi]"]], "]"]], RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyPhi]", "]"]], RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]]], RowBox[List["\[DifferentialD]", "\[CurlyPhi]"]], RowBox[List["\[DifferentialD]", "\[CurlyTheta]"]]]]]]]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> j </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mi> m </mi> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", SubscriptBox["m", "1"], "\[MediumSpace]", SubscriptBox["m", "2"]]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", "j", "\[MediumSpace]", "m"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> m </mi> <mo> , </mo> <mrow> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </msub> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </msup> </mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </msubsup> <mrow> <msubsup> <mo> ∫ </mo> <mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </msubsup> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> φ </mi> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ϑ </mi> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> ( </mo> <mi> ϑ </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ϑ </mi> <mo> - </mo> <mi> φ </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> ( </mo> <mi> φ </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> φ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> ϑ </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> m </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> j </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> φ </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <int /> <bvar> <ci> ϑ </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> φ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> ϑ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <sin /> <ci> ϑ </ci> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <plus /> <ci> ϑ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> φ </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sin /> <ci> φ </ci> </apply> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["m", ",", RowBox[List[SubscriptBox["mm", "1"], "+", SubscriptBox["mm", "2"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "m"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[ImaginaryI]"]], ")"]], RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]], "!"]]]]], ")"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", FractionBox["\[Pi]", "2"]]], FractionBox["\[Pi]", "2"]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", FractionBox["\[Pi]", "2"]]], FractionBox["\[Pi]", "2"]], RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SubscriptBox["mm", "1"], " ", "\[CurlyPhi]"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SubscriptBox["mm", "2"], " ", "\[CurlyTheta]"]]]]], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], RowBox[List["j", "+", SubscriptBox["j", "2"], "-", SubscriptBox["j", "1"]]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["\[CurlyTheta]", "-", "\[CurlyPhi]"]], "]"]], RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", "\[CurlyPhi]", "]"]], RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]]]]], RowBox[List["\[DifferentialD]", "\[CurlyPhi]"]], RowBox[List["\[DifferentialD]", "\[CurlyTheta]"]]]]]]]]]], RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "1"]], ")"]], "!"]]]]], ")"]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|