
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.38.11.0001.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
ClebschGordan[{Subscript[j, 1], Subscript[m, 1]},
{Subscript[j, 2], Subscript[m, 2]}, {j, m}] ==
(-1)^(-Subscript[j, 2] + Subscript[j, 1] + m)
((Sqrt[2 j + 1] Sqrt[(Subscript[j, 1] + Subscript[j, 2] + j + 1)!]
Sqrt[(Subscript[j, 1] + Subscript[m, 1])!]
Sqrt[(Subscript[j, 1] - Subscript[m, 1])!]
Sqrt[(Subscript[j, 2] + Subscript[m, 2])!]
Sqrt[(Subscript[j, 2] - Subscript[m, 2])!] Sqrt[(j - m)!]
Sqrt[(j + m)!])/(Sqrt[(Subscript[j, 1] + Subscript[j, 2] - j)!]
Sqrt[(Subscript[j, 2] + j - Subscript[j, 1])!]
Sqrt[(j + Subscript[j, 1] - Subscript[j, 2])!]))
SeriesTerm[E^((-Subscript[x, 1]) y + x Subscript[y, 1] +
Subscript[x, 1] z - Subscript[y, 1] z - x Subscript[z, 1] +
y Subscript[z, 1]), {x, 0, Subscript[j, 1] + Subscript[m, 1]},
{Subscript[x, 1], 0, Subscript[j, 1] - Subscript[m, 1]},
{y, 0, Subscript[j, 2] + Subscript[m, 2]}, {Subscript[y, 1], 0,
Subscript[j, 2] - Subscript[m, 2]}, {z, 0, j - m},
{Subscript[z, 1], 0, j + m}] /; \[ScriptCapitalP]\[ScriptH]\[ScriptY]\
\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ][
{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]},
{j, m}]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "+", SubscriptBox["j", "1"], "+", "m"]]], RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]], ")"]], "!"]]], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", "j", "-", SubscriptBox["j", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]], "!"]]]]], ")"]]]], RowBox[List["SeriesTerm", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["x", "1"]]], " ", "y"]], "+", RowBox[List["x", " ", SubscriptBox["y", "1"]]], "+", RowBox[List[SubscriptBox["x", "1"], " ", "z"]], "-", RowBox[List[SubscriptBox["y", "1"], " ", "z"]], "-", RowBox[List["x", " ", SubscriptBox["z", "1"]]], "+", RowBox[List["y", " ", SubscriptBox["z", "1"]]]]]], ",", RowBox[List["{", RowBox[List["x", ",", "0", ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["m", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["x", "1"], ",", "0", ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["m", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["y", ",", "0", ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["y", "1"], ",", "0", ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "0", ",", RowBox[List["j", "-", "m"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", "0", ",", RowBox[List["j", "+", "m"]]]], "}"]]]], "]"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> j </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mi> m </mi> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", SubscriptBox["m", "1"], "\[MediumSpace]", SubscriptBox["m", "2"]]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", "j", "\[MediumSpace]", "m"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <mrow> <msup> <mi> x </mi> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> , </mo> <mtext> </mtext> <msubsup> <mi> x </mi> <mn> 1 </mn> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </msubsup> <mo> , </mo> <msup> <mi> y </mi> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> , </mo> <msubsup> <mi> y </mi> <mn> 1 </mn> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msubsup> <mo> , </mo> <msup> <mi> z </mi> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> , </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> </msubsup> </mrow> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msub> <mi> x </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> y </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> y </mi> <mo> ⁢ </mo> <msub> <mi> x </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> xz </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <mi> x </mi> <mo> ⁢ </mo> <msub> <mi> y </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mi> y </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <mo> 〈 </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext>   </mtext> <mo> ❘ </mo> <mtext>   </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mtext>   </mtext> <mi> j </mi> <mo> ⁢ </mo> <mtext>   </mtext> <mi> m </mi> </mrow> </mrow> <mo> 〉 </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[LeftAngleBracket]", RowBox[List[RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", SubscriptBox["m", "1"], "\[MediumSpace]", SubscriptBox["m", "2"]]], "\[MediumSpace]", "\[VerticalSeparator]", "\[MediumSpace]", RowBox[List[SubscriptBox["j", "1"], "\[MediumSpace]", SubscriptBox["j", "2"], "\[MediumSpace]", "j", "\[MediumSpace]", "m"]]]], "\[RightAngleBracket]"]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <mrow> <msup> <mi> x </mi> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> , </mo> <mtext> </mtext> <msubsup> <mi> x </mi> <mn> 1 </mn> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> </msubsup> <mo> , </mo> <msup> <mi> y </mi> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> , </mo> <msubsup> <mi> y </mi> <mn> 1 </mn> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msubsup> <mo> , </mo> <msup> <mi> z </mi> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> , </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> </mrow> </msubsup> </mrow> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <msub> <mi> x </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> y </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> y </mi> <mo> ⁢ </mo> <msub> <mi> x </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> xz </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mrow> <mi> x </mi> <mo> ⁢ </mo> <msub> <mi> y </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mi> y </mi> <mo> ⁢ </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> 𝒫𝒽𝓎𝓈𝒾𝒸𝒶ℓ𝒬 </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 1 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mi> j </mi> <mo> , </mo> <mi> m </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", SubscriptBox["j", "2"]]], "+", SubscriptBox["j", "1"], "+", "m"]]], " ", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "m"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", "m"]], ")"]], "!"]]]]], ")"]], " ", RowBox[List["SeriesTerm", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["x", "1"]]], " ", "y"]], "+", RowBox[List["x", " ", SubscriptBox["y", "1"]]], "+", RowBox[List[SubscriptBox["x", "1"], " ", "z"]], "-", RowBox[List[SubscriptBox["y", "1"], " ", "z"]], "-", RowBox[List["x", " ", SubscriptBox["z", "1"]]], "+", RowBox[List["y", " ", SubscriptBox["z", "1"]]]]]], ",", RowBox[List["{", RowBox[List["x", ",", "0", ",", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["mm", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["x", "1"], ",", "0", ",", RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["mm", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["y", ",", "0", ",", RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["y", "1"], ",", "0", ",", RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "0", ",", RowBox[List["j", "-", "m"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["z", "1"], ",", "0", ",", RowBox[List["j", "+", "m"]]]], "}"]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", "j", "-", SubscriptBox["j", "1"]]], ")"]], "!"]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["j", "+", SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"]]], ")"]], "!"]]]]]], "/;", RowBox[List["\[ScriptCapitalP]\[ScriptH]\[ScriptY]\[ScriptS]\[ScriptI]\[ScriptC]\[ScriptA]\[ScriptL]\[ScriptCapitalQ]", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["mm", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|