Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ClebschGordan






Mathematica Notation

Traditional Notation









Hypergeometric Functions > ClebschGordan[{j1,m1},{j2,m2},{j,m}] > Identities > Functional identities > Arguments j2, j, m2, m changing by 1





http://functions.wolfram.com/07.38.17.0040.01









  


  










Input Form





ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2]}, {j, m}] == (-((Sqrt[j - m] Sqrt[j - m - 1] Sqrt[-Subscript[j, 1] + Subscript[j, 2] + j] Sqrt[Subscript[j, 1] - Subscript[j, 2] + j] Sqrt[Subscript[j, 1] + Subscript[j, 2] - j + 1] Sqrt[Subscript[j, 1] + Subscript[j, 2] + j + 1])/ (2 j Sqrt[2 j - 1] Sqrt[2 j + 1] Sqrt[Subscript[j, 2] - Subscript[m, 2]] Sqrt[Subscript[j, 2] + Subscript[m, 2] + 1]))) ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2] + 1}, {j - 1, m + 1}] + ((((-Subscript[j, 1]) (Subscript[j, 1] + 1) + Subscript[j, 2] (Subscript[j, 2] + 1) + j (j + 1)) Sqrt[j - m] Sqrt[j + m + 1])/ (2 j (j + 1) Sqrt[Subscript[j, 2] - Subscript[m, 2]] Sqrt[Subscript[j, 2] + Subscript[m, 2] + 1])) ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2] + 1}, {j, m + 1}] + ((Sqrt[j + m + 1] Sqrt[j + m + 2] Sqrt[-Subscript[j, 1] + Subscript[j, 2] + j + 1] Sqrt[Subscript[j, 1] - Subscript[j, 2] + j + 1] Sqrt[Subscript[j, 1] + Subscript[j, 2] - j] Sqrt[Subscript[j, 1] + Subscript[j, 2] + j + 2])/ (2 (j + 1) Sqrt[2 j + 1] Sqrt[2 j + 3] Sqrt[Subscript[j, 2] - Subscript[m, 2]] Sqrt[Subscript[j, 2] + Subscript[m, 2] + 1])) ClebschGordan[{Subscript[j, 1], Subscript[m, 1]}, {Subscript[j, 2], Subscript[m, 2] + 1}, {j + 1, m + 1}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m"]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List["j", "-", "m"]]], " ", SqrtBox[RowBox[List["j", "-", "m", "-", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j", "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]]]]], RowBox[List["2", "j", SqrtBox[RowBox[List[RowBox[List["2", "j"]], "-", "1"]]], SqrtBox[RowBox[List[RowBox[List["2", "j"]], "+", "1"]]], SqrtBox[RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"], "+", "1"]]]]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["m", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["j", "-", "1"]], ",", RowBox[List["m", "+", "1"]]]], "}"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", "1"]], ")"]]]], "+", RowBox[List[SubscriptBox["j", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", "1"]], ")"]]]], "+", RowBox[List["j", " ", RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["j", "-", "m"]]], " ", SqrtBox[RowBox[List["j", "+", "m", "+", "1"]]]]], RowBox[List["2", "j", " ", RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], SqrtBox[RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"], "+", "1"]]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["m", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", RowBox[List["m", "+", "1"]]]], "}"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["j", "+", "m", "+", "1"]]], " ", SqrtBox[RowBox[List["j", "+", "m", "+", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j", "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "2"]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], SqrtBox[RowBox[List[RowBox[List["2", "j"]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["2", "j"]], "+", "3"]]], SqrtBox[RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["m", "2"]]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["m", "2"], "+", "1"]]]]]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["m", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["j", "+", "1"]], ",", RowBox[List["m", "+", "1"]]]], "}"]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> j </mi> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> m </mi> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;2&quot;]]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;j&quot;, &quot;\[MediumSpace]&quot;, &quot;m&quot;]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mi> j </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;m&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]]]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, RowBox[List[&quot;j&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;\[MediumSpace]&quot;, RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]]]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> j </mi> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mi> j </mi> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;m&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]]]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, &quot;j&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]]]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> j </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msub> <mi> j </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> j </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> &#9001; </mo> <mrow> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> m </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> m </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mtext> &#8287; </mtext> <mo> &#10072; </mo> <mtext> &#8287; </mtext> <mrow> <msub> <mi> j </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <msub> <mi> j </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> &#8290; </mo> <mtext> &#8287; </mtext> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <mo> &#9002; </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[LeftAngleBracket]&quot;, RowBox[List[RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;m&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;m&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]]]], &quot;\[MediumSpace]&quot;, &quot;\[VerticalSeparator]&quot;, &quot;\[MediumSpace]&quot;, RowBox[List[SubscriptBox[&quot;j&quot;, &quot;1&quot;], &quot;\[MediumSpace]&quot;, SubscriptBox[&quot;j&quot;, &quot;2&quot;], &quot;\[MediumSpace]&quot;, RowBox[List[&quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;\[MediumSpace]&quot;, RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]]]]]], &quot;\[RightAngleBracket]&quot;]], ClebschGordan, Rule[StripWrapperBoxes, True]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <ci> j </ci> <ci> m </ci> </list> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> j </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <ci> j </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> j </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> j </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <ci> j </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> j </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> j </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> ClebschGordan </ci> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["m_", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", SubscriptBox["m_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", "m_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["j", "-", "m"]]], " ", SqrtBox[RowBox[List["j", "-", "m", "-", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j", "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]]]]], ")"]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["mm", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["j", "-", "1"]], ",", RowBox[List["m", "+", "1"]]]], "}"]]]], "]"]]]], RowBox[List["2", " ", "j", " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "-", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"], "+", "1"]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "1"], "+", "1"]], ")"]]]], "+", RowBox[List[SubscriptBox["j", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["j", "2"], "+", "1"]], ")"]]]], "+", RowBox[List["j", " ", RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]]]]]], ")"]], " ", SqrtBox[RowBox[List["j", "-", "m"]]], " ", SqrtBox[RowBox[List["j", "+", "m", "+", "1"]]]]], ")"]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["mm", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List["j", ",", RowBox[List["m", "+", "1"]]]], "}"]]]], "]"]]]], RowBox[List["2", " ", "j", " ", RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"], "+", "1"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["j", "+", "m", "+", "1"]]], " ", SqrtBox[RowBox[List["j", "+", "m", "+", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", SubscriptBox["j", "1"]]], "+", SubscriptBox["j", "2"], "+", "j", "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "-", SubscriptBox["j", "2"], "+", "j", "+", "1"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "-", "j"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "1"], "+", SubscriptBox["j", "2"], "+", "j", "+", "2"]]]]], ")"]], " ", RowBox[List["ClebschGordan", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["j", "1"], ",", SubscriptBox["mm", "1"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["j", "2"], ",", RowBox[List[SubscriptBox["mm", "2"], "+", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["j", "+", "1"]], ",", RowBox[List["m", "+", "1"]]]], "}"]]]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "j"]], "+", "3"]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "-", SubscriptBox["mm", "2"]]]], " ", SqrtBox[RowBox[List[SubscriptBox["j", "2"], "+", SubscriptBox["mm", "2"], "+", "1"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29