  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.14.04.0020.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Limit[GegenbauerC[\[Nu], \[Lambda], x + I \[Epsilon]], 
   \[Epsilon] -> Plus[0]] == GegenbauerC[\[Nu], \[Lambda], x] /; x < -1 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]"]]]]]], "]"]], ",", RowBox[List["\[Epsilon]", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "\[Equal]", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", "x"]], "]"]]]], "/;", RowBox[List["x", "<", RowBox[List["-", "1"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <munder>  <mi> lim </mi>  <mrow>  <mi> ϵ </mi>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mrow>  <mo> + </mo>  <mn> 0 </mn>  </mrow>  </mrow>  </munder>  <mo> ⁢ </mo>  <mtext>   </mtext>  <mrow>  <msubsup>  <mi> C </mi>  <mi> ν </mi>  <mi> λ </mi>  </msubsup>  <mo> ( </mo>  <mrow>  <mi> x </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> ϵ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <msubsup>  <mi> C </mi>  <mi> ν </mi>  <mi> λ </mi>  </msubsup>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> x </mi>  <mo> < </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <limit />  <bvar>  <ci> ϵ </ci>  </bvar>  <condition>  <apply>  <tendsto />  <ci> ϵ </ci>  <apply>  <plus />  <cn type='integer'> 0 </cn>  </apply>  </apply>  </condition>  <apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> C </ci>  <ci> ν </ci>  </apply>  <ci> λ </ci>  </apply>  <apply>  <plus />  <ci> x </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> ϵ </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> C </ci>  <ci> ν </ci>  </apply>  <ci> λ </ci>  </apply>  <ci> x </ci>  </apply>  </apply>  <apply>  <lt />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "\[Lambda]_", ",", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "\[Epsilon]_"]]]]]], "]"]], ",", RowBox[List["\[Epsilon]_", "\[Rule]", RowBox[List["+", "0"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", "x"]], "]"]], "/;", RowBox[List["x", "<", RowBox[List["-", "1"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |