Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Hypergeometric Functions > GegenbauerC[nu,lambda,z] > Series representations > Generalized power series > Expansions at z==0 > For the function itself > General case





http://functions.wolfram.com/07.14.06.0048.01









  


  










Input Form





GegenbauerC[\[Nu], \[Lambda], z] \[Proportional] ((2^(1 - 2 \[Lambda]) Sqrt[Pi] Gamma[\[Nu] + 2 \[Lambda]])/ (Gamma[\[Nu] + 1] Gamma[\[Lambda]])) (Sqrt[Pi]/(Gamma[(1 - \[Nu])/2] Gamma[\[Lambda] + (1 + \[Nu])/2]) - (2 Sqrt[Pi] z)/(Gamma[\[Lambda] + \[Nu]/2] Gamma[-(\[Nu]/2)]) + ((2^(-1 + 2 \[Lambda]) Gamma[1 - \[Nu]/2] Gamma[1 + \[Lambda] + \[Nu]/2])/ (Sqrt[Pi] Gamma[-\[Nu]] Gamma[2 \[Lambda] + \[Nu]])) z^2 + O[z^3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", " ", "\[Lambda]", ",", " ", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]], RowBox[List["(", RowBox[List[FractionBox[SqrtBox["\[Pi]"], RowBox[List[RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "]"]]]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", "z"]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", FractionBox["\[Nu]", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["\[Nu]", "2"]]], "]"]]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Lambda]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", FractionBox["\[Nu]", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Lambda]", "+", FractionBox["\[Nu]", "2"]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]]]]], SuperscriptBox["z", "2"]]], "+", RowBox[List["O", "[", SuperscriptBox["z", "3"], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#955; </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msqrt> <mi> &#960; </mi> </msqrt> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#955; </mi> <mo> + </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> &#957; </ci> </apply> <ci> &#955; </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#955; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#955; </ci> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[SqrtBox["\[Pi]"], RowBox[List[RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", FractionBox[RowBox[List["1", "+", "\[Nu]"]], "2"]]], "]"]]]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", "z"]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", FractionBox["\[Nu]", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["\[Nu]", "2"]]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", FractionBox["\[Nu]", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Lambda]", "+", FractionBox["\[Nu]", "2"]]], "]"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]]]]], "+", SuperscriptBox[RowBox[List["O", "[", "z", "]"]], "3"]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02