| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.14.06.0018.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | GegenbauerC[\[Nu], \[Lambda], z] == 
  ((Sin[\[Nu] Pi] Gamma[\[Nu] + 2 \[Lambda]])/(Pi Gamma[\[Nu] + 1] 
      Gamma[2 \[Lambda]])) Log[(z + 1)/2] Hypergeometric2F1[-\[Nu], 
     \[Nu] + 2 \[Lambda], 1/2 + \[Lambda], (z + 1)/2] - 
   ((2^(1/2 - \[Lambda]) Sin[\[Nu] Pi] Gamma[\[Lambda] - 1/2])/
     (Sqrt[Pi] Gamma[\[Lambda]])) (z + 1)^(1/2 - \[Lambda]) 
    Sum[((Pochhammer[1/2 - \[Nu] - \[Lambda], k] Pochhammer[
         1/2 + \[Nu] + \[Lambda], k])/(k! Pochhammer[3/2 - \[Lambda], k])) 
      ((z + 1)/2)^k, {k, 0, \[Lambda] - 3/2}] - 
   ((2^(1 - 2 \[Lambda]) Sin[\[Nu] Pi] Gamma[\[Nu] + 2 \[Lambda]])/
     (Sqrt[Pi] Gamma[\[Nu] + 1] Gamma[\[Lambda]])) 
    Sum[((Pochhammer[-\[Nu], k] Pochhammer[\[Nu] + 2 \[Lambda], k])/
       (k! Gamma[1/2 + k + \[Lambda]])) (PolyGamma[k + 1] - 
       PolyGamma[k + \[Nu] + 2 \[Lambda]] - PolyGamma[k - \[Nu]] + 
       PolyGamma[1/2 + k + \[Lambda]]) ((1 + z)/2)^k, {k, 0, Infinity}] /; 
 Element[\[Lambda] - 3/2, Integers] && \[Lambda] - 3/2 >= 0 && 
   !(Element[\[Nu], Integers] && \[Nu] >= 0) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", " ", "\[Lambda]"]], "]"]]]]], RowBox[List["Log", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]"]], ",", FractionBox[RowBox[List["z", "+", "1"]], "2"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", FractionBox["1", "2"]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["\[Lambda]", "-", FractionBox["3", "2"]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]", "-", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]", "+", "\[Lambda]"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "-", "\[Lambda]"]], ",", "k"]], "]"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "+", "1"]], "2"], ")"]], "k"]]]]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]]], "  ", RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k", "+", "\[Lambda]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "-", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k", "+", "\[Lambda]"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", "z"]], "2"], ")"]], "k"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List["\[Lambda]", "-", FractionBox["3", "2"]]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["\[Lambda]", "-", FractionBox["3", "2"]]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List["\[Nu]", "\[Element]", "Integers"]], "\[And]", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]]]], "]"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msubsup>  <mi> C </mi>  <mi> ν </mi>  <mi> λ </mi>  </msubsup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> ν </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> λ </mi>  </mrow>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> λ </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> λ </mi>  </mrow>  <mo> + </mo>  <mi> ν </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mi> λ </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", "\[Nu]"]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["\[Lambda]", "+", FractionBox["1", "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox[RowBox[List["z", "+", "1"]], "2"], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> λ </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> ν </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> λ </mi>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> λ </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> λ </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> λ </mi>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> λ </mi>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]", "-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mi> λ </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Lambda]", "+", "\[Nu]", "+", FractionBox["1", "2"]]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  <mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> λ </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", "\[Lambda]"]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> λ </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> ν </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> λ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> λ </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> λ </mi>  </mrow>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  <mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> λ </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> λ </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> λ </mi>  </mrow>  <mo> + </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> ν </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <mi> λ </mi>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> ν </mi>  <mo> ∉ </mo>  <mi> ℤ </mi>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> C </ci>  <ci> ν </ci>  </apply>  <ci> λ </ci>  </apply>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <sin />  <apply>  <times />  <ci> ν </ci>  <pi />  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> λ </ci>  </apply>  <ci> ν </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <pi />  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> λ </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ln />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> λ </ci>  </apply>  <ci> ν </ci>  </apply>  <apply>  <plus />  <ci> λ </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> λ </ci>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <ci> ν </ci>  <pi />  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> λ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <ci> λ </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> λ </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> λ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> λ </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  <ci> k </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <ci> λ </ci>  <ci> ν </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> k </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <cn type='rational'> 3 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> λ </ci>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> λ </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <sin />  <apply>  <times />  <ci> ν </ci>  <pi />  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> ν </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> λ </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <ci> λ </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <ci> Pochhammer </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  <ci> k </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> λ </ci>  </apply>  <ci> ν </ci>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> k </ci>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <ci> k </ci>  <ci> λ </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <ci> PolyGamma </ci>  <ci> ψ </ci>  </apply>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> k </ci>  <ci> λ </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> λ </ci>  </apply>  <ci> ν </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> ν </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <apply>  <plus />  <ci> λ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <ci> ℕ </ci>  </apply>  <apply>  <notin />  <ci> ν </ci>  <ci> ℤ </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ",", RowBox[List[FractionBox["1", "2"], "+", "\[Lambda]"]], ",", FractionBox[RowBox[List["z", "+", "1"]], "2"]]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", " ", "\[Lambda]"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "-", FractionBox["1", "2"]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["\[Lambda]", "-", FractionBox["3", "2"]]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "\[Nu]", "-", "\[Lambda]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "\[Nu]", "+", "\[Lambda]"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "+", "1"]], "2"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "-", "\[Lambda]"]], ",", "k"]], "]"]]]]]]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Nu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "\[Nu]", "+", RowBox[List["2", " ", "\[Lambda]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "-", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k", "+", "\[Lambda]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", "z"]], "2"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "k", "+", "\[Lambda]"]], "]"]]]]]]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Nu]", "+", "1"]], "]"]], " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["\[Lambda]", "-", FractionBox["3", "2"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["\[Lambda]", "-", FractionBox["3", "2"]]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List["\[Nu]", "\[Element]", "Integers"]], "&&", RowBox[List["\[Nu]", "\[GreaterEqual]", "0"]]]], ")"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |