|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.14.06.0069.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GegenbauerC[\[Nu], \[Lambda], z] \[Proportional]
((2^\[Nu] Gamma[\[Lambda] + \[Nu]])/(Gamma[\[Lambda]] Gamma[1 + \[Nu]]))
z^\[Nu] (1 - ((1 - \[Nu]) \[Nu])/(4 (1 - \[Lambda] - \[Nu]) z^2) +
((-3 + \[Nu]) (-2 + \[Nu]) (-1 + \[Nu]) \[Nu])/
(32 (-2 + \[Lambda] + \[Nu]) (-1 + \[Lambda] + \[Nu]) z^4) +
\[Ellipsis]) - ((2^(-2 \[Lambda] - \[Nu]) Sin[Pi \[Nu]]
Gamma[-\[Lambda] - \[Nu]] Gamma[2 \[Lambda] + \[Nu]])/
(Pi Gamma[\[Lambda]])) z^(-\[Nu] - 2 \[Lambda])
(1 + ((2 \[Lambda] + \[Nu]) (1 + 2 \[Lambda] + \[Nu]))/
(4 (1 + \[Lambda] + \[Nu]) z^2) +
((2 \[Lambda] + \[Nu]) (1 + 2 \[Lambda] + \[Nu])
(2 + 2 \[Lambda] + \[Nu]) (3 + 2 \[Lambda] + \[Nu]))/
(32 (1 + \[Lambda] + \[Nu]) (2 + \[Lambda] + \[Nu]) z^4) +
\[Ellipsis]) /; (Abs[z] -> Infinity) &&
!Element[\[Lambda] + \[Nu], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], SuperscriptBox["z", "\[Nu]"], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", "\[Nu]"]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "-", "\[Lambda]", "-", "\[Nu]"]], ")"]], SuperscriptBox["z", "2"], " "]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]], " ", "\[Nu]"]], RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], SuperscriptBox["z", "4"], " "]]], "+", "\[Ellipsis]"]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]], " "]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", RowBox[List["2", "\[Lambda]"]]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], SuperscriptBox["z", "2"], " "]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]]]], RowBox[List["32", " ", RowBox[List["(", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], SuperscriptBox["z", "4"], " "]]], "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], ",", "Integers"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> ν </mi> <mi> λ </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> ν </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> λ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> ν </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> λ </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> λ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> λ </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> λ </mi> </mrow> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> λ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mtext> </mtext> </mrow> </mfrac> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> λ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> ν </ci> </apply> <ci> λ </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> ν </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> λ </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> λ </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> ν </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> -3 </cn> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> -2 </cn> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <ci> ν </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <cn type='integer'> -2 </cn> <ci> λ </ci> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <ci> λ </ci> <ci> ν </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> λ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> λ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <ci> ν </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> λ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <ci> Gamma </ci> <ci> λ </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <ci> ν </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> λ </ci> <ci> ν </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> λ </ci> </apply> <ci> ν </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> λ </ci> <ci> ν </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> λ </ci> <ci> ν </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <notin /> <apply> <plus /> <ci> λ </ci> <ci> ν </ci> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", "\[Lambda]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "\[Nu]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Lambda]", "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", "\[Nu]"]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "-", "\[Lambda]", "-", "\[Nu]"]], ")"]], " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Nu]"]], ")"]], " ", "\[Nu]"]], RowBox[List["32", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", SuperscriptBox["z", "4"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", "\[Lambda]", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Lambda]"]], "-", "\[Nu]"]]], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "\[Lambda]"]], "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", RowBox[List["2", " ", "\[Lambda]"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", SuperscriptBox["z", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]]]], RowBox[List["32", " ", RowBox[List["(", RowBox[List["1", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Lambda]", "+", "\[Nu]"]], ")"]], " ", SuperscriptBox["z", "4"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", "\[Lambda]", "]"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["!", RowBox[List[RowBox[List["\[Lambda]", "+", "\[Nu]"]], "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|