|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.14.06.0030.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GegenbauerC[\[Nu], -\[Nu], z] \[Proportional]
(Sin[Pi \[Nu]]/Pi) 2^(\[Nu] + 1) z^\[Nu] (EulerGamma - Log[2] -
Log[z - 1] + PolyGamma[-\[Nu]]) (1 + O[1/z]) /;
(Abs[z] -> Infinity) && !Element[\[Nu], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Nu]"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], "\[Pi]"], SuperscriptBox["2", RowBox[List["\[Nu]", "+", "1"]]], " ", SuperscriptBox["z", "\[Nu]"], RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["Not", "[", RowBox[List["\[Nu]", "\[Element]", "Integers"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> C </mi> <mi> ν </mi> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> ν </mi> </msup> </mrow> <mi> π </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mi> ℽ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubledGamma]", Function[EulerGamma]] </annotation> </semantics> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> ν </mi> <mo> ∉ </mo> <mi> ℤ </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <sin /> <apply> <times /> <pi /> <ci> ν </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> ν </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <eulergamma /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <notin /> <ci> ν </ci> <ci> ℤ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]_", ",", RowBox[List["-", "\[Nu]_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", SuperscriptBox["2", RowBox[List["\[Nu]", "+", "1"]]], " ", SuperscriptBox["z", "\[Nu]"], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]], "\[Pi]"], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|