Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GegenbauerC






Mathematica Notation

Traditional Notation









Hypergeometric Functions > GegenbauerC[nu,lambda,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/07.14.13.0007.01









  


  










Input Form





Derivative[2][w][z] + ((-1 + r + 2 s - a^2 z^(2 r) (-1 + 2 s - 2 r \[Lambda]))/ (z (-1 + a^2 z^(2 r)))) Derivative[1][w][z] + (((-s) (r + s) + a^2 z^(2 r) (s + r \[Nu]) (s - r (2 \[Lambda] + \[Nu])))/ (z^2 (-1 + a^2 z^(2 r)))) w[z] == 0 /; w[z] == Subscript[c, 1] z^s GegenbauerC[\[Nu], \[Lambda], a z^r] + Subscript[c, 2] z^s (1 - a^2 z^(2 r))^((1 - 2 \[Lambda])/4) LegendreQ[\[Nu] + \[Lambda] - 1/2, 1/2 - \[Lambda], 2, a z^r]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "s"]], "-", RowBox[List["2", " ", "r", " ", "\[Lambda]"]]]], ")"]]]]]], RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], ")"]]]]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "s"]], " ", RowBox[List["(", RowBox[List["r", "+", "s"]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]], " ", RowBox[List["(", RowBox[List["s", "+", RowBox[List["r", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["s", "-", RowBox[List["r", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]"]], "+", "\[Nu]"]], ")"]]]]]], ")"]]]]]], RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], ")"]]]]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], SuperscriptBox["z", "s"], RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SuperscriptBox["z", "s"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], SuperscriptBox["z", RowBox[List["2", "r"]]]]]]], ")"]], FractionBox[RowBox[List["1", "-", RowBox[List["2", "\[Lambda]"]]]], "4"]], " ", RowBox[List["LegendreQ", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Lambda]", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], " ", "-", "\[Lambda]"]], ",", "2", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> + </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> s </mi> <mo> - </mo> <mrow> <mi> r </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> s </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> &#957; </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> </mrow> <mn> 4 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mrow> <mi> &#955; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#955; </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;a&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;r&quot;]]], HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> <ci> &#955; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> <apply> <plus /> <ci> s </ci> <apply> <times /> <ci> r </ci> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> r </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> <ci> &#957; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> s </ci> <apply> <plus /> <ci> r </ci> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> &#957; </ci> </apply> <ci> &#955; </ci> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> LegendreQ </ci> <apply> <plus /> <ci> &#955; </ci> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "r_", "+", RowBox[List["2", " ", "s_"]], "-", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["z_", RowBox[List["2", " ", "r_"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "s_"]], "-", RowBox[List["2", " ", "r_", " ", "\[Lambda]_"]]]], ")"]]]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], RowBox[List["z_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["z_", RowBox[List["2", " ", "r_"]]]]]]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "s_"]], " ", RowBox[List["(", RowBox[List["r_", "+", "s_"]], ")"]]]], "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["z_", RowBox[List["2", " ", "r_"]]], " ", RowBox[List["(", RowBox[List["s_", "+", RowBox[List["r_", " ", "\[Nu]_"]]]], ")"]], " ", RowBox[List["(", RowBox[List["s_", "-", RowBox[List["r_", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Lambda]_"]], "+", "\[Nu]_"]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]], RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SuperscriptBox["a_", "2"], " ", SuperscriptBox["z_", RowBox[List["2", " ", "r_"]]]]]]], ")"]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", SuperscriptBox["z", "s"], " ", RowBox[List["GegenbauerC", "[", RowBox[List["\[Nu]", ",", "\[Lambda]", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox["z", "s"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", RowBox[List["2", " ", "r"]]]]]]], ")"]], RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "\[Lambda]"]]]], ")"]]]]], " ", RowBox[List["LegendreQ", "[", RowBox[List[RowBox[List["\[Nu]", "+", "\[Lambda]", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "\[Lambda]"]], ",", "2", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02