Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HermiteH






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HermiteH[nu,z] > Differentiation > Symbolic differentiation > With respect to nu





http://functions.wolfram.com/07.01.20.0015.01









  


  










Input Form





D[HermiteH[\[Nu], z], {\[Nu], m}] == Sqrt[Pi] 2^\[Nu] Sum[Binomial[m, k] Log[2]^(m - k) (Sum[D[Pochhammer[-(\[Nu]/2), j]/Gamma[(1 - \[Nu])/2], {\[Nu], k}] ((2 z)^(2 j)/(2 j)!), {j, 0, Infinity}] - 2 z Sum[D[Pochhammer[(1 - \[Nu])/2, j]/Gamma[-(\[Nu]/2)], {\[Nu], k}] ((2 z)^(2 j)/(2 j + 1)!), {j, 0, Infinity}]), {k, 0, m}] /; Element[m, Integers] && m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "m"]], "}"]]], RowBox[List["HermiteH", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["2", "\[Nu]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], RowBox[List["m", "-", "k"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "k"]], "}"]]], FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", "j"]], "]"]], RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "]"]]]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["2", "z"]], ")"]], RowBox[List["2", " ", "j"]]], RowBox[List[RowBox[List["(", RowBox[List["2", "j"]], ")"]], "!"]]]]]]], "-", RowBox[List["2", " ", "z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Nu]", ",", "k"]], "}"]]], FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", "j"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["\[Nu]", "2"]]], "]"]]]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["2", "z"]], ")"]], RowBox[List["2", " ", "j"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "j"]], "+", "1"]], ")"]], "!"]]]]]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> m </mi> </msup> <mrow> <msub> <mi> H </mi> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> m </mi> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> k </mi> </msup> <mfrac> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;-&quot;, FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;]]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> k </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> k </mi> </msup> <mfrac> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> &#957; </mi> <mi> k </mi> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> m </ci> </degree> </bvar> <apply> <ci> HermiteH </ci> <ci> &#957; </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> k </ci> </degree> </bvar> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> &#957; </ci> <degree> <ci> k </ci> </degree> </bvar> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]_", ",", "m_"]], "}"]]]]], RowBox[List["HermiteH", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox["\[Pi]"], " ", SuperscriptBox["2", "\[Nu]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "m"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "2", "]"]], RowBox[List["m", "-", "k"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "k"]], "}"]]]]], FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", "j"]], "]"]], RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], RowBox[List["2", " ", "j"]]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "j"]], ")"]], "!"]]]]], "-", RowBox[List["2", " ", "z", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Nu]", ",", "k"]], "}"]]]]], FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", "j"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["\[Nu]", "2"]]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], RowBox[List["2", " ", "j"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02