|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.01.23.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[(HermiteH[2 n + 1, z] w^n)/(2 n + 1)!, {n, 0, Infinity}] ==
(1/(E^w Sqrt[-w])) Sin[2 z Sqrt[-w]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["HermiteH", "[", RowBox[List[RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ",", "z"]], "]"]], " ", SuperscriptBox["w", "n"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "+", "1"]], ")"]], "!"]]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "w"]]], SqrtBox[RowBox[List["-", "w"]]]], RowBox[List["Sin", "[", RowBox[List["2", "z", " ", RowBox[List["Sqrt", "[", RowBox[List["-", "w"]], "]"]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <mrow> <msub> <mi> H </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> w </mi> <mi> n </mi> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </msqrt> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> HermiteH </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <apply> <power /> <ci> w </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["HermiteH", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ",", "z_"]], "]"]], " ", SuperscriptBox["w_", "n_"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n_"]], "+", "1"]], ")"]], "!"]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "w"]]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z", " ", SqrtBox[RowBox[List["-", "w"]]]]], "]"]]]], SqrtBox[RowBox[List["-", "w"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|