|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.17.03.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric0F1[2/3 - n, z] == (((-1)^n Pi)/(3^(1/3) Gamma[1/3 + n]))
z^(n + 1/3) D[(AiryBi[3^(2/3) z^(1/3)] + Sqrt[3] AiryAi[3^(2/3) z^(1/3)])/
z^3^(-1), {z, n}] /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List[FractionBox["2", "3"], "-", "n"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "3"], "+", "n"]], "]"]]]]], " ", SuperscriptBox["z", RowBox[List["n", "+", FractionBox["1", "3"]]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["AiryBi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["2", "3"], "-", "n"]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mrow> <mroot> <mn> 3 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> Bi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric0F1 </ci> <apply> <plus /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <pi /> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List[FractionBox["2", "3"], "-", "n_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", "\[Pi]"]], ")"]], " ", SuperscriptBox["z", RowBox[List["n", "+", FractionBox["1", "3"]]]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "/", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["AiryBi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]], "+", RowBox[List[SqrtBox["3"], " ", RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "3"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "3"], "+", "n"]], "]"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|