|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.17.03.0079.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric0F1[14/3, z] == (1/(6561 3^(5/6) z^(11/3)))
(440 (-9 Sqrt[3] z^(2/3) (40 + 9 z) AiryAi[3^(2/3) z^(1/3)] +
30 3^(1/6) (8 + 9 z) AiryAiPrime[3^(2/3) z^(1/3)] -
9 z^(2/3) (40 + 9 z) AiryBi[3^(2/3) z^(1/3)] +
10 3^(2/3) (8 + 9 z) AiryBiPrime[3^(2/3) z^(1/3)]) Gamma[-(1/3)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["14", "3"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["6561", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["11", "/", "3"]]]]]], RowBox[List["(", RowBox[List["440", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "9"]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["40", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["30", " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["8", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "-", RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["40", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["8", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "3"]]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mfrac> <mn> 14 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["14", "3"], Hypergeometric0F1, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", Hypergeometric0F1, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric0F1] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 6561 </mn> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 440 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 9 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 40 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Ai </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> Ai </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 40 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Bi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> Bi </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric0F1 </ci> <cn type='rational'> 14 <sep /> 3 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 6561 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 440 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -9 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> <cn type='integer'> 40 </cn> </apply> <apply> <ci> AiryAi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <ci> AiryAiPrime </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> <cn type='integer'> 40 </cn> </apply> <apply> <ci> AiryBi </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <ci> AiryBiPrime </ci> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["14", "3"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["440", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "9"]], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["40", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["AiryAi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["30", " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", RowBox[List["(", RowBox[List["8", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["AiryAiPrime", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "-", RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["40", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["AiryBi", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]], "+", RowBox[List["10", " ", SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", RowBox[List["(", RowBox[List["8", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["AiryBiPrime", "[", RowBox[List[SuperscriptBox["3", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", FractionBox["1", "3"]]], "]"]]]], RowBox[List["6561", " ", SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", RowBox[List["11", "/", "3"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|