|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.17.10.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric0F1[b, z] ==
1 + z/b/(1 + ContinueFraction[{-(z/((k + 1) (b + k))),
1 + z/((k + 1) (b + k))}, {k, 1, Infinity}])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List["b", ",", "z"]], "]"]], "\[Equal]", RowBox[List["1", "+", RowBox[List[FractionBox["z", "b"], "/", RowBox[List["(", RowBox[List["1", "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["z", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], RowBox[List["(", RowBox[List["b", "+", "k"]], ")"]]]]]]], ",", RowBox[List["1", "+", FractionBox["z", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], RowBox[List["(", RowBox[List["b", "+", "k"]], ")"]]]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["b", Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> z </mi> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msubsup> <mrow> <msub> <mi> Κ </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> z </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 1 </mn> <mi> ∞ </mi> </msubsup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric0F1 </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <apply> <ci> Subscript </ci> <ci> Κ </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <infinity /> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric0F1", "[", RowBox[List["b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["1", "+", FractionBox["z", RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["z", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "k"]], ")"]]]]]]], ",", RowBox[List["1", "+", FractionBox["z", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "k"]], ")"]]]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]], ")"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|