
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.17.13.0012.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Wronskian[z^s Hypergeometric0F1[b, a z^r],
z^(r + s - r b) Hypergeometric0F1[2 - b, a z^r], z] ==
(1 - b) r z^(-1 + r - b r + 2 s)
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["z", "s"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List["b", ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["z", RowBox[List["r", "+", "s", "-", RowBox[List["r", " ", "b"]]]]], RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["2", "-", "b"]], ",", RowBox[List["a", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "r", "-", RowBox[List["b", " ", "r"]], "+", RowBox[List["2", " ", "s"]]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["b", Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[RowBox[List["a", " ", SuperscriptBox["z", "r"]]], Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mi> s </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", "b"]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[RowBox[List["a", " ", SuperscriptBox["z", "r"]]], Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ⁢ </mo> <mi> r </mi> </mrow> <mo> + </mo> <mi> r </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> Hypergeometric0F1 </ci> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> r </ci> </apply> <ci> r </ci> <ci> s </ci> </apply> </apply> <apply> <ci> Hypergeometric0F1 </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> r </ci> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> r </ci> </apply> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["z_", "s_"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List["b_", ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["z_", RowBox[List["r_", "+", "s_", "-", RowBox[List["r_", " ", "b_"]]]]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[RowBox[List["2", "-", "b_"]], ",", RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "r", "-", RowBox[List["b", " ", "r"]], "+", RowBox[List["2", " ", "s"]]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|