| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.17.20.0016.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Derivative[1, 0][Hypergeometric0F1][1/2 - n, z] == 
  Gamma[1/2 - n] z^((1 + 2 n)/4) (PolyGamma[1/2 - n] - (1/2) Log[z]) 
    BesselI[-(1/2) - n, 2 Sqrt[z]] + 
   (1/(2 n)!) (Sum[Binomial[n, 2 k] (2 n - 2 k)! 
       ((PolyGamma[k + 1/2] - PolyGamma[k - n + 1/2]) Cosh[2 Sqrt[z]] + 
        Cosh[2 Sqrt[z]] CoshIntegral[4 Sqrt[z]] - Sinh[2 Sqrt[z]] 
         SinhIntegral[4 Sqrt[z]]) (16 z)^k, {k, 0, Floor[n/2]}] + 
     4 Sqrt[z] Sum[Binomial[n, 2 k + 1] (2 n - 2 k - 1)! 
        ((PolyGamma[k - n + 1/2] - PolyGamma[k + 3/2] - CoshIntegral[
            4 Sqrt[z]]) Sinh[2 Sqrt[z]] + Cosh[2 Sqrt[z]] 
          SinhIntegral[4 Sqrt[z]]) (16 z)^k, {k, 0, Floor[(n - 1)/2]}]) /; 
 Element[n, Integers] && n >= 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["1", ",", "0"]], "]"]], "[", "Hypergeometric0F1", "]"]], "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "n"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "n"]], "]"]], SuperscriptBox["z", FractionBox[RowBox[List["1", "+", RowBox[List["2", "n"]]]], "4"]], " ", RowBox[List["(", " ", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "n"]], "]"]], "-", RowBox[List[FractionBox["1", "2"], RowBox[List["Log", "[", "z", "]"]]]]]], ")"]], RowBox[List["BesselI", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]], ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["2", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List["2", "k"]]]], "]"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "-", RowBox[List["2", "k"]]]], ")"]], "!"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", FractionBox["1", "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "-", "n", "+", FractionBox["1", "2"]]], "]"]]]], ")"]], RowBox[List["Cosh", "[", RowBox[List["2", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", SqrtBox["z"]]], "]"]], RowBox[List["CoshIntegral", "[", RowBox[List["4", SqrtBox["z"]]], "]"]]]], "-", RowBox[List[RowBox[List["Sinh", "[", RowBox[List["2", SqrtBox["z"]]], "]"]], RowBox[List["SinhIntegral", "[", RowBox[List["4", SqrtBox["z"]]], "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["16", "z"]], ")"]], "k"]]]]], "+", RowBox[List["4", " ", SqrtBox["z"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], " ", RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", RowBox[List["2", " ", "k"]], "-", "1"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "-", "n", "+", FractionBox["1", "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", FractionBox["3", "2"]]], "]"]], "-", RowBox[List["CoshIntegral", "[", RowBox[List["4", SqrtBox["z"]]], "]"]]]], ")"]], RowBox[List["Sinh", "[", RowBox[List["2", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", SqrtBox["z"]]], "]"]], RowBox[List["SinhIntegral", "[", RowBox[List["4", SqrtBox["z"]]], "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["16", "z"]], ")"]], "k"]]]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msub>  <mn> 0 </mn>  </msub>  <mrow>  <msubsup>  <mi> F </mi>  <mn> 1 </mn>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <semantics>  <mo>   </mo>  <annotation encoding='Mathematica'> TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]] </annotation>  </semantics>  <mo> ; </mo>  <semantics>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> n </mi>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[TagBox[RowBox[List[FractionBox["1", "2"], "-", "n"]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]] </annotation>  </semantics>  <mo> ; </mo>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", Hypergeometric0F1, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mrow>  <msub>  <mi> I </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msub>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  <mn> 4 </mn>  </mfrac>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> Chi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Shi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mi> n </mi>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["2", " ", "k"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Chi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Shi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℕ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <mrow>  <mrow>  <mrow>  <msub>  <mn> 0 </mn>  </msub>  <mrow>  <msubsup>  <mi> F </mi>  <mn> 1 </mn>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <semantics>  <mo>   </mo>  <annotation encoding='Mathematica'> TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]] </annotation>  </semantics>  <mo> ; </mo>  <semantics>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> n </mi>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[TagBox[RowBox[List[FractionBox["1", "2"], "-", "n"]], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]] </annotation>  </semantics>  <mo> ; </mo>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", Hypergeometric0F1, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mrow>  <msub>  <mi> I </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msub>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </mrow>  <mn> 4 </mn>  </mfrac>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> Chi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Shi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mi> n </mi>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[RowBox[List["2", " ", "k"]], Identity, Rule[Editable, True], Rule[Selectable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Chi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> n </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Shi </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <semantics>  <mi> ℕ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Hypergeometric0F1", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "-", "n_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "-", "n"]], "]"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "n"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["1", "2"], "-", "n"]], "]"]], "-", FractionBox[RowBox[List["Log", "[", "z", "]"]], "2"]]], ")"]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]], ",", RowBox[List["2", " ", SqrtBox["z"]]]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List["2", " ", "k"]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", RowBox[List["2", " ", "k"]]]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", FractionBox["1", "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "-", "n", "+", FractionBox["1", "2"]]], "]"]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]], " ", RowBox[List["CoshIntegral", "[", RowBox[List["4", " ", SqrtBox["z"]]], "]"]]]], "-", RowBox[List[RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["4", " ", SqrtBox["z"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["16", " ", "z"]], ")"]], "k"]]]]], "+", RowBox[List["4", " ", SqrtBox["z"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", RowBox[List["2", " ", "k"]], "-", "1"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "-", "n", "+", FractionBox["1", "2"]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", FractionBox["3", "2"]]], "]"]], "-", RowBox[List["CoshIntegral", "[", RowBox[List["4", " ", SqrtBox["z"]]], "]"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]]]], "+", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["2", " ", SqrtBox["z"]]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["4", " ", SqrtBox["z"]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["16", " ", "z"]], ")"]], "k"]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |