|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.17.26.0033.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric0F1[b, -z] BesselJ[\[Nu], 2 Sqrt[z]] ==
(Gamma[b]/Sqrt[Pi]) 2^(-1 + b) MeijerG[{{(1 - b)/2, 1 - b/2}, {}},
{{\[Nu]/2}, {-(\[Nu]/2), 1 - b + \[Nu]/2, 1 - b - \[Nu]/2}}, 4 z] /;
!(Element[-b - \[Nu], Integers] && -b - \[Nu] >= 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List["b", ",", RowBox[List["-", "z"]]]], "]"]], RowBox[List["BesselJ", "[", RowBox[List["\[Nu]", ",", RowBox[List["2", SqrtBox["z"]]]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["Gamma", "[", "b", "]"]], SqrtBox["\[Pi]"]], SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "b"]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", "b"]], "2"], ",", RowBox[List["1", "-", FractionBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["\[Nu]", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "-", "b", "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "-", "b", "-", FractionBox["\[Nu]", "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", "z"]]]], "]"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "\[GreaterEqual]", "0"]]]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["b", Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "z"]], Hypergeometric0F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mi> ν </mi> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mfrac> <mi> ν </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "4"]], RowBox[List["1", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["4", " ", "z"]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox[RowBox[List["1", "-", "b"]], "2"], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", FractionBox["b", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[FractionBox["\[Nu]", "2"], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b", "+", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b", "-", FractionBox["\[Nu]", "2"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ∉ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <ci> Hypergeometric0F1 </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> J </ci> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <times /> <ci> Γ </ci> <ci> b </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> </list> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["Hypergeometric0F1", "[", RowBox[List["b_", ",", RowBox[List["-", "z_"]]]], "]"]], " ", RowBox[List["BesselJ", "[", RowBox[List["\[Nu]_", ",", RowBox[List["2", " ", SqrtBox["z_"]]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", "b"]]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["1", "-", "b"]], "2"], ",", RowBox[List["1", "-", FractionBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["\[Nu]", "2"], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "-", "b", "+", FractionBox["\[Nu]", "2"]]], ",", RowBox[List["1", "-", "b", "-", FractionBox["\[Nu]", "2"]]]]], "}"]]]], "}"]], ",", RowBox[List["4", " ", "z"]]]], "]"]]]], SqrtBox["\[Pi]"]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "-", "\[Nu]"]], "\[GreaterEqual]", "0"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|