|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.19.20.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[HypergeometricPFQ[{a}, {}, z], {a, \[Alpha]}] ==
(((-a) Log[1 - z])^\[Alpha] (1 - GammaRegularized[-\[Alpha],
(-a) Log[1 - z]]))/(a^\[Alpha] (1 - z)^a)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "\[Alpha]"]], "}"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "a", "}"]], ",", RowBox[List["{", "}"]], ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["a", RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "a"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]], "\[Alpha]"], RowBox[List["(", RowBox[List["1", "-", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]]]], "]"]]]], ")"]], " "]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 0 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ; </mo> <mo>   </mo> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox["F", FormBox["0", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> a </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <msup> <mi> a </mi> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> α </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> </list> <list /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> α </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> GammaRegularized </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "a_", "}"]], ",", RowBox[List["{", "}"]], ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["a", RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "a"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List["-", "\[Alpha]"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]]]], "]"]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|