Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1Regularized[a,b,c,z] > Specific values > Values at z=1/2 > For fixed c





http://functions.wolfram.com/07.24.03.0044.01









  


  










Input Form





Hypergeometric2F1Regularized[2, 4, c, 1/2] == (2/(3 Gamma[c - 2])) (4 c^2 - 32 c + 65 - 2 (c - 3) (c - 4) (2 c - 7) (PolyGamma[(c - 1)/2] - PolyGamma[(c - 2)/2]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["2", ",", "4", ",", "c", ",", FractionBox["1", "2"]]], "]"]], "\[Equal]", RowBox[List[FractionBox["2", RowBox[List["3", RowBox[List["Gamma", "[", RowBox[List["c", "-", "2"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["4", SuperscriptBox["c", "2"]]], "-", RowBox[List["32", "c"]], "+", "65", "-", RowBox[List["2", RowBox[List["(", RowBox[List["c", "-", "3"]], ")"]], RowBox[List["(", RowBox[List["c", "-", "4"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["2", "c"]], "-", "7"]], ")"]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["c", "-", "1"]], "2"], "]"]], " ", "-", RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["c", "-", "2"]], "2"], "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;2&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;c&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mtext> </mtext> </mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mn> 65 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1Regularized </ci> <cn type='integer'> 2 </cn> <cn type='integer'> 4 </cn> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 32 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 65 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> c </ci> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> c </ci> <cn type='integer'> -4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["2", ",", "4", ",", "c_", ",", FractionBox["1", "2"]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["c", "2"]]], "-", RowBox[List["32", " ", "c"]], "+", "65", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["c", "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["c", "-", "4"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "-", "7"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["c", "-", "1"]], "2"], "]"]], "-", RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["c", "-", "2"]], "2"], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "2"]], "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29