|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.24.03.0052.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1Regularized[a, 1 - 2 a, 4/3 - a, 1/9] ==
Gamma[2/3 - a]/(Gamma[2/3] Gamma[4/3 - 2 a])/3^a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", RowBox[List["1", "-", RowBox[List["2", "a"]]]], ",", RowBox[List[FractionBox["4", "3"], "-", "a"]], ",", FractionBox["1", "9"]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["3", RowBox[List["-", "a"]]], FractionBox[RowBox[List["Gamma", "[", RowBox[List[FractionBox["2", "3"], "-", "a"]], "]"]], RowBox[List[RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]], RowBox[List["Gamma", "[", RowBox[List[FractionBox["4", "3"], "-", RowBox[List["2", "a"]]]], "]"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["4", "3"], "-", "a"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[FractionBox["1", "9"], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> ⩵ </mo> <mfrac> <mrow> <msup> <mn> 3 </mn> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 9 </cn> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", RowBox[List["1", "-", RowBox[List["2", " ", "a_"]]]], ",", RowBox[List[FractionBox["4", "3"], "-", "a_"]], ",", FractionBox["1", "9"]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List["-", "a"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["2", "3"], "-", "a"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["4", "3"], "-", RowBox[List["2", " ", "a"]]]], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{},{b},z] | HypergeometricPFQRegularized[{a1},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|