|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.24.03.0070.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1Regularized[a, (4 a + 3)/6, (4 a)/3 + 1, 12 Sqrt[2] - 16] ==
((2^(-1 - 2 a) (2 + Sqrt[2])^(2 a))/(Gamma[1 + a/3] Gamma[1 + a]
Gamma[(4 a + 3)/6])) (3 Gamma[1 + a/6] Gamma[(1 + a)/2] -
Gamma[1 + a/2] Gamma[(3 + a)/6])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", FractionBox[RowBox[List[RowBox[List["4", "a"]], "+", "3"]], "6"], ",", RowBox[List[FractionBox[RowBox[List["4", "a"]], "3"], "+", "1"]], ",", RowBox[List[RowBox[List["12", SqrtBox["2"]]], "-", "16"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", SqrtBox["2"]]], ")"]], RowBox[List["2", " ", "a"]]], " "]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox["a", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List[RowBox[List["4", "a"]], "+", "3"]], "6"], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox["a", "6"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "+", "a"]], "2"], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["3", "+", "a"]], "6"], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 6 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mn> 3 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> - </mo> <mn> 16 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List[RowBox[List["4", "a"]], "+", "3"]], "6"], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["4", " ", "a"]], "3"], "+", "1"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["12", " ", SqrtBox["2"]]], "-", "16"]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> a </mi> <mn> 3 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 6 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> a </mi> <mn> 6 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> a </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 6 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -16 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a_"]], "+", "3"]], ")"]]]], ",", RowBox[List[FractionBox[RowBox[List["4", " ", "a_"]], "3"], "+", "1"]], ",", RowBox[List[RowBox[List["12", " ", SqrtBox["2"]]], "-", "16"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "a"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", SqrtBox["2"]]], ")"]], RowBox[List["2", " ", "a"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox["a", "6"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "+", "a"]], "2"], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox["a", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["3", "+", "a"]], "6"], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", FractionBox["a", "3"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a"]], "+", "3"]], ")"]]]], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{},{b},z] | HypergeometricPFQRegularized[{a1},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|