Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1Regularized[a,b,c,z] > Specific values > Specialized values > For fixed a, b, z





http://functions.wolfram.com/07.24.03.0086.01









  


  










Input Form





Hypergeometric2F1Regularized[a, b, a + b + 3/2, z] == ((1/(2 a + 1)) (Sqrt[z] LegendreP[b - a - 1/2, 1/2 - a - b, 2, Sqrt[1 - z]] - 2 b LegendreP[b - a + 1/2, -(1/2) - a - b, 2, Sqrt[1 - z]]))/(z/4)^((1 + 2 a + 2 b)/4)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", "b", ",", RowBox[List["a", "+", "b", "+", FractionBox["3", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", "a"]], "+", "1"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", "4"], ")"]], RowBox[List["-", FractionBox[RowBox[List["1", "+", RowBox[List["2", "a"]], "+", RowBox[List["2", "b"]]]], "4"]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["b", "-", "a", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "a", "-", "b"]], ",", "2", ",", SqrtBox[RowBox[List["1", "-", "z"]]]]], "]"]]]], "-", RowBox[List["2", "b", " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["b", "-", "a", "+", FractionBox["1", "2"]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "a", "-", "b"]], ",", "2", ",", SqrtBox[RowBox[List["1", "-", "z"]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;b&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <annotation encoding='Mathematica'> TagBox[SqrtBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;z&quot;]]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> ( </mo> <semantics> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <annotation encoding='Mathematica'> TagBox[SqrtBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;z&quot;]]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <ci> b </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <ci> LegendreP </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", "b_", ",", RowBox[List["a_", "+", "b_", "+", FractionBox["3", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["z", "4"], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["b", "-", "a", "-", FractionBox["1", "2"]]], ",", RowBox[List[FractionBox["1", "2"], "-", "a", "-", "b"]], ",", "2", ",", SqrtBox[RowBox[List["1", "-", "z"]]]]], "]"]]]], "-", RowBox[List["2", " ", "b", " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["b", "-", "a", "+", FractionBox["1", "2"]]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "a", "-", "b"]], ",", "2", ",", SqrtBox[RowBox[List["1", "-", "z"]]]]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "1"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29