| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.24.03.0210.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1Regularized[1, 1/2 - n, 3/2, z] == 
  (((2 n - 1)!! (1 - z)^n)/((2 n)!! Sqrt[Pi] Sqrt[z])) 
    Log[(1 + Sqrt[z])/(1 - Sqrt[z])] + ((2 (1 - z)^n)/(z Sqrt[Pi])) 
    Sum[(((2 n - 1)!! (k - 1)!)/(2^(n - k + 1) n!)) 
      Sum[(((-1)^(k - j) Binomial[n, j] (2 j - 2 k - 1)!!)/(2 j - 1)!!) 
        (z/(1 - z))^k, {j, k, n}], {k, 1, n}] /; Element[n, {1, 2}] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], "-", "n"]], ",", FractionBox["3", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "-", "1"]], ")"]], "!!"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "n"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "n"]], ")"]], "!!"]], SqrtBox["\[Pi]"], SqrtBox["z"]]]], RowBox[List["Log", "[", FractionBox[RowBox[List["1", "+", SqrtBox["z"]]], RowBox[List["1", "-", SqrtBox["z"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "n"]]], RowBox[List["z", SqrtBox["\[Pi]"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "n"]], "-", "1"]], ")"]], "!!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "!"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["n", "-", "k", "+", "1"]]], RowBox[List["n", "!"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "k"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "j"]]], RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "j"]], "-", RowBox[List["2", "k"]], "-", "1"]], ")"]], "!!"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "j"]], "-", "1"]], ")"]], "!!"]]], SuperscriptBox[RowBox[List["(", FractionBox["z", RowBox[List["1", "-", "z"]]], ")"]], "k"]]]]]]]]]]]]]]], "/;", RowBox[List["n", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2"]], "}"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mi> n </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["1", "2"], "-", "n"]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["3", "2"], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> !! </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  </mrow>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> !! </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> n </mi>  </msup>  </mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> !! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mi> k </mi>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> !! </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> !! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> n </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> j </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mtext>    </mtext>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mi> z </mi>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> Hypergeometric2F1Regularized </ci>  <cn type='integer'> 1 </cn>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <ci> Factorial2 </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <ci> n </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <ci> Factorial2 </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ln />  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <ci> n </ci>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <ci> Factorial2 </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> n </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <factorial />  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <ci> k </ci>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <ci> k </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Factorial2 </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <ci> Factorial2 </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> n </ci>  <list>  <cn type='integer'> 1 </cn>  <cn type='integer'> 2 </cn>  </list>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", RowBox[List[FractionBox["1", "2"], "-", "n_"]], ",", FractionBox["3", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]], ")"]], "!!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "n"]]], ")"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "+", SqrtBox["z"]]], RowBox[List["1", "-", SqrtBox["z"]]]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "n"]], ")"]], "!!"]], " ", SqrtBox["\[Pi]"], " ", SqrtBox["z"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "n"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]], ")"]], "!!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "!"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "k"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "j"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", RowBox[List["2", " ", "k"]], "-", "1"]], ")"]], "!!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox["z", RowBox[List["1", "-", "z"]]], ")"]], "k"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "1"]], ")"]], "!!"]]]]]]], RowBox[List[SuperscriptBox["2", RowBox[List["n", "-", "k", "+", "1"]]], " ", RowBox[List["n", "!"]]]]]]]]], RowBox[List["z", " ", SqrtBox["\[Pi]"]]]]]], "/;", RowBox[List["n", "\[Element]", RowBox[List["{", RowBox[List["1", ",", "2"]], "}"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQRegularized[{},{b},z] |  | HypergeometricPFQRegularized[{a1},{b1},z] |  | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |