Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1Regularized[a,b,c,z] > Series representations > Generalized power series > Expansions at z==infinity > For the function itself > Generic formulas for main term





http://functions.wolfram.com/07.24.06.0067.01









  


  










Input Form





Hypergeometric2F1Regularized[a, b, c, z] \[Proportional] Piecewise[{{((-1)^(a - c) (b - c)!)/(Gamma[a] (b - a)!)/(-z)^b, Element[b - a, Integers] && b - a >= 0 && Element[a - c, Integers] && a - c >= 0}, {Log[-z]/((-z)^a (Gamma[a] (c - a - 1)!)), b == a && !(Element[a - c, Integers] && a - c >= 0)}, {((-1)^(b - c) (a - c)!)/(Gamma[b] (a - b)!)/(-z)^a, Element[a - b, Integers] && a - b >= 0 && Element[b - c, Integers] && b - c >= 0}, {0, Element[-c, Integers] && -c >= 0 && ((Element[-a, Integers] && -a >= 0 && c - a <= 0) || (Element[-b, Integers] && -b >= 0 && c - b <= 0))}, {Gamma[b - a]/(Gamma[b] Gamma[c - a])/(-z)^a, Re[b - a] > 0 || (Element[-c, Integers] && -c >= 0 && Element[-a, Integers] && -a >= 0 && c - a > 0)}, {Gamma[a - b]/(Gamma[a] Gamma[c - b])/(-z)^b, Re[b - a] < 0 || (Element[-c, Integers] && -c >= 0 && Element[-b, Integers] && -b >= 0 && c - b > 0)}}, Gamma[b - a]/(Gamma[b] Gamma[c - a])/(-z)^a + Gamma[a - b]/(Gamma[a] Gamma[c - b])/(-z)^b] /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Proportional]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "-", "c"]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "!"]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "a"]], ")"]], "!"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], ",", RowBox[List[RowBox[List[RowBox[List["b", "-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["b", "-", "a"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["a", "-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["a", "-", "c"]], "\[GreaterEqual]", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]], RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], RowBox[List[RowBox[List["(", RowBox[List["c", "-", "a", "-", "1"]], ")"]], "!"]]]]], ",", RowBox[List[RowBox[List["b", "\[Equal]", "a"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List["a", "-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["a", "-", "c"]], "\[GreaterEqual]", "0"]]]], "]"]]]]]], "}"]], ",", "\[IndentingNewLine]", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["b", "-", "c"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], "!"]]]], RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "!"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], " ", ",", RowBox[List[RowBox[List[RowBox[List["a", "-", "b"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["a", "-", "b"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["b", "-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["b", "-", "c"]], "\[GreaterEqual]", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["c", "-", "a"]], "\[LessEqual]", "0"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "b"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["c", "-", "b"]], "\[LessEqual]", "0"]]]], ")"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["b", "-", "a"]], "]"]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], ",", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], ">", "0"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["c", "-", "a"]], ">", "0"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "b"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], ",", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], "<", "0"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["-", "b"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "b"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["c", "-", "b"]], ">", "0"]]]], ")"]]]]]], "}"]]]], "}"]], ",", RowBox[List[RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["b", "-", "a"]], "]"]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], "+", RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "b"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]]]]]], "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;c&quot;, Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric2F1Regularized, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mo> &#62305; </mo> <mtable> <mtr> <mtd> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mi> b </mi> <mo> &#63449; </mo> <mi> a </mi> </mrow> <mo> &#8743; </mo> <mrow> <mo> &#172; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8805; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mrow> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mn> 0 </mn> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox[&quot;True&quot;, &quot;PiecewiseDefault&quot;, Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <piecewise> <piece> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> &#8469; </ci> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> b </ci> <ci> a </ci> </apply> <apply> <not /> <apply> <and /> <apply> <in /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <integers /> </apply> <apply> <geq /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> &#8469; </ci> </apply> </apply> </piece> <piece> <cn type='integer'> 0 </cn> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> &#8469; </ci> </apply> <apply> <or /> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> &#8469; </ci> </apply> <apply> <leq /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> &#8469; </ci> </apply> <apply> <leq /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <or /> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> &#8469; </ci> </apply> <apply> <gt /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <or /> <apply> <lt /> <apply> <real /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> &#8469; </ci> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> &#8469; </ci> </apply> <apply> <gt /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </piece> <otherwise> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </otherwise> </piecewise> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", "b_", ",", "c_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "-", "c"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "a"]], ")"]], "!"]]]]], RowBox[List[RowBox[List[RowBox[List["b", "-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["b", "-", "a"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["a", "-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["a", "-", "c"]], "\[GreaterEqual]", "0"]]]]], List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]], " ", RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "a", "-", "1"]], ")"]], "!"]]]]], RowBox[List[RowBox[List["b", "\[Equal]", "a"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["a", "-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["a", "-", "c"]], "\[GreaterEqual]", "0"]]]], ")"]]]]]]], List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["b", "-", "c"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "!"]]]]], RowBox[List[RowBox[List[RowBox[List["a", "-", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["a", "-", "b"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["b", "-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["b", "-", "c"]], "\[GreaterEqual]", "0"]]]]], List["0", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["c", "-", "a"]], "\[LessEqual]", "0"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "b"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["c", "-", "b"]], "\[LessEqual]", "0"]]]], ")"]]]], ")"]]]]], List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["b", "-", "a"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]]]]], RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], ">", "0"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["c", "-", "a"]], ">", "0"]]]], ")"]]]]], List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "b"]], "]"]]]]], RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], "<", "0"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["-", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "b"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["c", "-", "b"]], ">", "0"]]]], ")"]]]]], List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["b", "-", "a"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "b"]], "]"]]]]]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02