Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1Regularized[a,b,c,z] > Integral representations > Contour integral representations





http://functions.wolfram.com/07.24.07.0006.01









  


  










Input Form





Hypergeometric2F1Regularized[a, b, c, z] == (1/(2 Pi I)) (Gamma[c]/(Gamma[a] Gamma[b])) Integrate[(Gamma[s] Gamma[a - s] Gamma[b - s])/Gamma[c - s]/(-z)^s, {s, \[Gamma] - I Infinity, \[Gamma] + I Infinity}] /; 0 < \[Gamma] < Min[Re[a], Re[b]] && Abs[Arg[-z]] < Pi










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]], " "]]], FractionBox[RowBox[List["Gamma", "[", "c", "]"]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], RowBox[List["Gamma", "[", "b", "]"]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["b", "-", "s"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["c", "-", "s"]], "]"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]]]], "/;", RowBox[List[RowBox[List["0", "<", "\[Gamma]", "<", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ",", RowBox[List["Re", "[", "b", "]"]]]], "]"]]]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["-", "z"]], "]"]], "]"]], "<", "\[Pi]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;c&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mi> &#947; </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> </mrow> <mrow> <mi> &#947; </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#8734; </mi> </mrow> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> s </mi> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> &#947; </mi> <mo> &lt; </mo> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mi> &#960; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> s </ci> </bvar> <lowlimit> <apply> <plus /> <ci> &#947; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </apply> </lowlimit> <uplimit> <apply> <plus /> <ci> &#947; </ci> <apply> <times /> <imaginaryi /> <infinity /> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> &#947; </ci> <apply> <min /> <apply> <real /> <ci> a </ci> </apply> <apply> <real /> <ci> b </ci> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <arg /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <pi /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", "b_", ",", "c_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["\[Gamma]", "-", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]], RowBox[List["\[Gamma]", "+", RowBox[List["\[ImaginaryI]", " ", "\[Infinity]"]]]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "-", "s"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["b", "-", "s"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]]]], RowBox[List["Gamma", "[", RowBox[List["c", "-", "s"]], "]"]]], RowBox[List["\[DifferentialD]", "s"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", "b", "]"]]]], ")"]]]]], "/;", RowBox[List[RowBox[List["0", "<", "\[Gamma]", "<", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ",", RowBox[List["Re", "[", "b", "]"]]]], "]"]]]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List["-", "z"]], "]"]], "]"]], "<", "\[Pi]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29