Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1Regularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1Regularized[a,b,c,z] > Identities > Functional identities > Quadratic transformations with fixed a,b,z





http://functions.wolfram.com/07.24.17.0079.01









  


  










Input Form





Hypergeometric2F1Regularized[a, b, a + b - 1/2, z] == ((2^(2 a + 2 b - 3) Gamma[a + b - 1])/Sqrt[Pi]) (1/Sqrt[1 - z]) (Sqrt[1 - z] + Sqrt[-z])^(1 - 2 a) Hypergeometric2F1Regularized[2 a - 1, a + b - 1, 2 a + 2 b - 2, 2 Sqrt[z^2 - z] + 2 z] /; Re[z] < 1/2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", "b", ",", RowBox[List["a", "+", "b", "-", FractionBox["1", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "a"]], "+", RowBox[List["2", "b"]], "-", "3"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "-", "1"]], "]"]]]], SqrtBox["\[Pi]"]], FractionBox["1", SqrtBox[RowBox[List["1", "-", "z"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], ")"]], RowBox[List["1", "-", RowBox[List["2", "a"]]]]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "a"]], "-", "1"]], ",", RowBox[List["a", "+", "b", "-", "1"]], ",", RowBox[List[RowBox[List["2", "a"]], "+", RowBox[List["2", "b"]], "-", "2"]], ",", RowBox[List[RowBox[List["2", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "z"]]]]], "+", RowBox[List["2", "z"]]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "<", FractionBox["1", "2"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;b&quot;, &quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </msup> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;a&quot;]], &quot;-&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;b&quot;, &quot;-&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;a&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;b&quot;]], &quot;-&quot;, &quot;2&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;z&quot;]], &quot;+&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, SqrtBox[RowBox[List[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;-&quot;, &quot;z&quot;]]]]]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <ci> b </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <real /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", "b_", ",", RowBox[List["a_", "+", "b_", "-", FractionBox["1", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "3"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "-", "1"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "+", SqrtBox[RowBox[List["-", "z"]]]]], ")"]], RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "a"]], "-", "1"]], ",", RowBox[List["a", "+", "b", "-", "1"]], ",", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "2"]], ",", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "z"]]]]], "+", RowBox[List["2", " ", "z"]]]]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "<", FractionBox["1", "2"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29