|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.24.17.0080.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1Regularized[a, b, a + b - 1/2, z] ==
((2^(2 a + 2 b - 3) Gamma[a + b - 1])/Sqrt[Pi]) (1/Sqrt[1 - z])
(Sqrt[1 - z] - Sqrt[-z])^(1 - 2 a) Hypergeometric2F1Regularized[2 a - 1,
a + b - 1, 2 a + 2 b - 2, 2 Sqrt[z^2 - z] + 2 z] /; Re[z] > 1/2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", "b", ",", RowBox[List["a", "+", "b", "-", FractionBox["1", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "a"]], "+", RowBox[List["2", "b"]], "-", "3"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "-", "1"]], "]"]]]], SqrtBox["\[Pi]"]], FractionBox["1", SqrtBox[RowBox[List["1", "-", "z"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]], ")"]], RowBox[List["1", "-", RowBox[List["2", "a"]]]]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "a"]], "-", "1"]], ",", RowBox[List["a", "+", "b", "-", "1"]], ",", RowBox[List[RowBox[List["2", "a"]], "+", RowBox[List["2", "b"]], "-", "2"]], ",", RowBox[List[RowBox[List["2", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "z"]]]]], "+", RowBox[List["2", "z"]]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", FractionBox["1", "2"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["a", "+", "b", "-", FractionBox["1", "2"]]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> - </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> </msup> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "1"]], Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "b", "-", "1"]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "2"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["2", " ", "z"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "z"]]]]]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <ci> b </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", "b_", ",", RowBox[List["a_", "+", "b_", "-", FractionBox["1", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "3"]]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "-", "1"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], "-", SqrtBox[RowBox[List["-", "z"]]]]], ")"]], RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "a"]], "-", "1"]], ",", RowBox[List["a", "+", "b", "-", "1"]], ",", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]], "-", "2"]], ",", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "z"]]]]], "+", RowBox[List["2", " ", "z"]]]]]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", FractionBox["1", "2"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{},{b},z] | HypergeometricPFQRegularized[{a1},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|